Review of Radiation Oncology Physics:
A Handbook for Teachers and Students

Editor

Ervin B. Podgorsak, Ph.D.

Department of Medical Physics
McGill University Health Centre
Montréal, Québec, Canada

INTERNATIONAL ATOMIC ENERGY AGENCY
VIENNA, AUSTRIA
May 2003
CONTRIBUTORS
(numbers in brackets refer to chapter numbers authored or co-authored by the contributor)

Pedro Andreo, Ph.D. [9]
Department of Medical Radiation Physics
University of Stockholm, Karolinska Institute
Stockholm, Sweden

Department of Medical Physics
McGill University Health Centre
Montréal, Québec, Canada

Jolyon H. Hendry, Ph.D. [14]
Applied Radiobiology and Radiotherapy Section
Department of Nuclear Sciences and Applications
International Atomic Energy Agency
Vienna, Austria

John L. Horton, Ph.D. [10]
Department of Radiation Physics
University of Texas M.D. Anderson Cancer Centre
Houston, Texas, U.S.A.

Joanna Izewska, Ph.D. [3, 4]
Dosimetry and Medical Radiation Physics Section
Department of Nuclear Sciences and Applications
International Atomic Energy Agency
Vienna, Austria

Ben J. Mijnheer, Ph.D. [12]
Department of Radiotherapy
The Netherlands Cancer Institute
Amsterdam, The Netherlands

John A. Mills, Ph.D. [12]
Department of Clinical Physics
Walsgrave Hospital
Coventry, England, United Kingdom

Marina Olivares, M.Sc. [8]
Department of Medical Physics
McGill University Health Centre
Montréal, Québec, Canada

Pedro Ortiz López, Ph.D. [16]
Radiation Safety Section
Department of Nuclear Safety
International Atomic Energy Agency
Vienna, Austria
Contributors

William Parker, M.Sc. [7, 8]
Department of Medical Physics
McGill University Health Centre
Montréal, Québec, Canada

Ervin B. Podgorsak, Ph.D. [1, 5, 6, 9, 13, 14, 15, 16]
Department of Medical Physics
McGill University Health Centre
Montréal, Québec, Canada

Matthew B. Podgorsak, Ph.D. [15]
Division of Radiation Oncology
Roswell Park Cancer Institute
Buffalo, New York, U.S.A.

Govinda Rajan, Ph.D. [3, 4, 16]
Medical Physics & Safety Section
Bhabha Atomic Research Centre
Mumbai, Maharashtra, India

Jan P. Seuntjens, Ph.D. [2, 9]
Department of Medical Physics
McGill University Health Centre
Montréal, Québec, Canada

Ken R. Shortt, Ph.D. [2]
Dosimetry and Medical Radiation Physics Section
Department of Nuclear Sciences and Applications
International Atomic Energy Agency
Vienna, Austria

Wynand Strydom, Ph.D. [2, 8]
Department of Medical Physics
Medical University of South Africa
Pretoria, South Africa

Nagalingam Suntharalingam, Ph.D. [13, 14]
Department of Radiation Oncology
Thomas Jefferson University Hospital
Philadelphia, Pennsylvania, U.S.A.

David I. Thwaites, Ph.D. [12]
Department of Oncology Physics
Edinburgh Cancer Centre, University of Edinburgh
Edinburgh, Scotland, United Kingdom

Heikki Tölli, Ph.D. [13]
Dosimetry and Medical Radiation Physics Section
Department of Nuclear Sciences and Applications
International Atomic Energy Agency
Vienna, Austria
PREAMBLE

Radiation therapy, also referred to as radiotherapy, radiation oncology or therapeutic radiology, is one of the three principal modalities used in treatment of malignant disease (cancer), the other two being surgery and chemotherapy. In contrast to other medical specialties that rely mainly on the clinical knowledge and experience of medical specialists, radiotherapy, with its use of ionising radiation in treatment of cancer, relies heavily on modern technology and collaborative efforts of several professionals whose coordinated team approach greatly influences the outcome of the treatment.

The radiotherapy team consists of radiation oncologists, medical physicists, dosimetrists, and radiation therapy technologists: all professionals characterized by widely differing educational backgrounds and one common link – the need to understand the basic elements of radiation physics and the interaction of ionising radiation with human tissue in particular. This specialized area of physics is referred to as radiation oncology physics and proficiency in this branch of physics is an absolute necessity for anybody who aspires to achieve excellence in any of the four professions constituting the radiotherapy team.

This book is dedicated to students and teachers involved in programmes that train professionals for work in radiation oncology. It provides a compilation of facts on the physics as applied to radiation oncology and as such will be useful to graduate students and residents in medical physics programmes, to residents in radiation oncology, as well as to students in dosimetry and radiotherapy technology programmes. The level of understanding of the material covered will, of course, be different for the various student groups; however, the basic language and knowledge for all student groups will be the same. The text will also be of use to candidates preparing for professional certification examinations be it in radiation oncology, medical physics, dosimetry, or radiotherapy technology.

The intent of the text is to serve as a factual supplement to the various textbooks on medical physics and to provide basic radiation oncology physics knowledge in the form of a syllabus covering all modern aspects of radiation oncology physics. While the text is mainly aimed at radiation oncology professionals, certain parts of it may also be of interest in other branches of medicine that use ionising radiation not for treatment of disease but for diagnosis of disease (diagnostic radiology and nuclear medicine). The content may also be useful for physicists who are involved in studies of radiation hazards and radiation protection (health physics).

I would like to thank all the authors for their contributions as well as colleagues and my wife Mariana for advice and encouragement throughout this project.

Ervin B. Podgorsak
FOREWORD

In the late nineties, following a re-focusing of the work within the Dosimetry and Medical Radiation Physics Section (DMRP), the IAEA initiated a systematic and comprehensive plan to support the development of teaching programmes in medical radiation physics for many of its Member States. Multiple projects were initiated at various levels which, together with the well known short-term training courses and specialization fellowships funded by IAEA Technical Cooperation Projects, aimed at supporting countries to develop their own university-based M.Sc. programmes in medical radiation physics.

One of the early programmatic activities by DMRP in this period was the development of a "Syllabus in Radiotherapy Physics", with the goal of harmonizing the various levels of training that the IAEA provided, mainly through short-term courses. This was done during 1997-1998 by a group of physicists from Europe and North America with long experience in the teaching of medical physics (B. Nilsson, Sweden; B. Planskoy, UK; J.C. Rosenwald, France; and N. Suntharalingam, USA) under the supervision of the then DMRP Section Head, P. Andreo. The result of this work was released as an internal report (IAEA DMRP-9802), and its success encouraged the next step aimed at supporting more directly the material used in the various M.Sc. programmes.

In 1999 a consultants’ meeting (R. Alfonso, Cuba; E. Podgorsak, Canada; G. Rajan, India; W. Strydom, South Africa; and N. Suntharalingam, USA) was conducted under P. Andreo’s supervision to analyze the task to be implemented. The possibility of writing a “Primer in Radiotherapy Physics”, based on the Syllabus above, which would provide physicists in developing countries with a modern and affordable text book was considered first. Arguments against this option were the wide availability of several excellent basic books in Radiotherapy Physics (even if it was difficult to recommend one in particular as being comprehensive), and the risk that the Primer would simply become another book, not necessarily better than the existing ones. Ultimately, a second option seemed more reasonable, which was to develop a “Teachers Guide”, where the various topics in the Syllabus would be expanded to form a detailed “bullet list” containing the basic guidelines of the material to be included in each topic so that lectures to students could be prepared accordingly. This should include a comprehensive bibliography in order to harmonize the content of the lectures in different sites. During 1999-2000 the consultants named above prepared an initial draft of some chapters. After the departure of P. Andreo from the IAEA, J. Izewska took on responsibility for the project and searched for an editor to build the Guide and fulfill its initial goal.

During the period 2001-2002, E. Podgorsak (Canada) was appointed editor of the project and under the supervision of K. Shortt, the new DMRP Section Head, and in conjunction with J. Izewska, he implemented a change in strategy that led to the successful completion of the entire project. With enormous enthusiasm and professionalism, he redesigned the contents so that the book became a comprehensive “Handbook for Teachers and Students”, with coverage deeper than a simple Guide. As well, he expanded considerably the initial list of topics by engaging an enhanced list of international contributors.
The “Handbook for Teachers and Students in Radiation Oncology Physics” aims at providing the basis for the education of medical physicists initiating their university studies in the field. It is not designed to replace the large number of textbooks available, which will still be necessary to deepen the level of knowledge in specific topics reviewed by the Handbook since it now includes the most recent advances in radiation therapy techniques available today. It is expected that the Handbook will successfully fill a gap in the teaching material for the specialty of Medical Radiation Physics, providing in a single manageable volume the largest possible coverage available today. Its wide dissemination by the IAEA will contribute undoubtedly to the harmonization of education in the field and be of value to newcomers as well as those preparing for their certification as medical physicists.

At this stage, the IAEA is publishing the Handbook as “working material” seeking comments, corrections and feedback.

IAEA scientific officers of the project were: P. Andreo, J. Izewska and K. Shortt.
**TABLE OF CONTENTS**

**Chapter 1. BASIC RADIATION PHYSICS**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1.1. Fundamental physical constants</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1.2. Important derived physical constants and relationships</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.1.3. Physical quantities and units</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.1.4. Classification of forces in nature</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.1.5. Classification of fundamental particles</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.1.6. Classification of radiation</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.1.7. Classification of ionizing photon radiation</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.1.8. Relativistic mass, energy, and momentum relationships</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.1.9. Radiation quantities and units</td>
<td>6</td>
</tr>
<tr>
<td>1.2.</td>
<td>ATOMIC AND NUCLEAR STRUCTURE</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.2.1. Basic definitions for atomic structure</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.2.2. Rutherford's model of the atom</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1.2.3. Bohr's model of hydrogen atom</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1.2.4. Multi-electron atoms</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1.2.5. Nuclear structure</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1.2.6. Nuclear reactions</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1.2.7. Radioactivity</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1.2.8. Activation of isotopes</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>1.2.9. Modes of radioactive decay</td>
<td>18</td>
</tr>
<tr>
<td>1.3.</td>
<td>ELECTRON INTERACTIONS</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1.3.1. Electron-orbital electron interactions</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1.3.2. Electron-nucleus interactions</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1.3.3. Stopping power</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>1.3.4. Mass scattering power</td>
<td>22</td>
</tr>
<tr>
<td>1.4.</td>
<td>PHOTON INTERACTIONS</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>1.4.1. Types of indirectly ionizing photon radiations</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>1.4.2. Photon beam attenuation</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>1.4.3. Types of photon interactions</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>1.4.4. Photoelectric effect</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1.4.5. Coherent (Rayleigh) scattering</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1.4.6. Compton effect (incoherent scattering)</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>1.4.7. Pair production</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>1.4.8. Photonuclear reactions</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>1.4.9. Contributions to attenuation coefficients</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>1.4.10. Relative predominance of individual effects</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>1.4.11. Effects following photon interactions</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>1.4.12. Summary of photon interactions</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>1.4.13. Example</td>
<td>34</td>
</tr>
</tbody>
</table>
Chapter 2. **DOSIMETRIC PRINCIPLES, QUANTITIES AND UNITS**

2.1. **INTRODUCTION** ................................................................. 37

2.2. **PHOTON FLUENCE AND ENERGY FLUENCE** ................. 37

2.3. **KERMA** .................................................................................. 39

2.4. **CEMA** .................................................................................. 40

2.5. **ABSORBED DOSE** ................................................................... 40

2.6. **STOPPING POWER** ................................................................. 41

2.7. **RELATIONSHIPS BETWEEN DOSIMETRIC QUANTITIES** .... 44

2.7.1. Energy fluence and kerma (photons) ....................................... 44

2.7.2. Fluence and dose (electrons) ...................................................... 46

2.7.3. Kerma and dose (charged particle equilibrium) ....................... 47

2.7.4. Collision kerma and exposure .................................................. 49

2.8. **CAVITY THEORY** .................................................................. 50

2.8.1. Bragg-Gray cavity theory .......................................................... 50

2.8.2. Spencer-Attix cavity theory ....................................................... 51

2.8.3. Considerations in the application of cavity theory to ionisation

          chamber calibration and dosimetry protocols .......................... 53

2.8.4. Large cavities in photon beams ................................................. 54

2.8.5. Burlin cavity theory for photon beams ...................................... 55

2.8.6. Stopping power ratios ............................................................... 56

**BIBLIOGRAPHY** ........................................................................ 58

Chapter 3. **RADIATION DOSIMETERS**

3.1. **INTRODUCTION** .................................................................... 59

3.2. **PROPERTIES OF DOSIMETERS** ........................................... 60

3.2.1. Accuracy and precision ............................................................ 60

3.2.2. Linearity .................................................................................. 62

3.2.3. Dose rate dependence ............................................................... 62

3.2.4. Energy dependence ................................................................. 63

3.2.5. Directional dependence ............................................................. 63

3.2.6. Spatial resolution and physical size .......................................... 63

3.2.7. Readout convenience ............................................................... 64

3.2.8. Convenience of use ................................................................. 64

3.3. **IONISATION CHAMBER DOSIMETRY SYSTEMS** ............... 64
3.3.1. Chambers and electrometers ............................................................. 64
3.3.2. Cylindrical (thimble type) ionisation chambers................................. 66
3.3.3. Parallel-plate (plane-parallel) ionisation chambers ......................... 66
3.3.4. Brachytherapy chambers ................................................................. 67
3.3.5. Extrapolation chambers .................................................................... 68

3.4. FILM DOSIMETRY ............................................................................ 68
  3.4.1. Radiographic film ........................................................................... 68
  3.4.2. Radiochromic film ........................................................................... 71

3.5. LUMINESCENCE DOSIMETRY ......................................................... 71
  3.5.1. Thermoluminescence ..................................................................... 72
  3.5.2. TLD systems ................................................................................... 73
  3.5.3. OSL systems ................................................................................... 75

3.6. SEMICONDUCTOR DOSIMETRY ...................................................... 75
  3.6.1. Silicon diode dosimetry systems ....................................................... 75
  3.6.2. MOSFET dosimeter ....................................................................... 76

3.7. OTHER DOSIMETRY SYSTEMS ..................................................... 77
  3.7.1. Alanine/EPR dosimetry system ........................................................ 77
  3.7.2. Plastic scintillator dosimetry system ................................................ 77
  3.7.3. Diamond dosimeters ..................................................................... 78
  3.7.4. Gel dosimetry systems ................................................................... 79

3.8. PRIMARY STANDARDS .................................................................... 80
  3.8.1. Primary standard for air-kerma in air ............................................. 80
  3.8.2. Primary standards for absorbed dose-to-water ................................ 80
  3.8.3. Ionometric standard for absorbed dose-to-water ........................... 81
  3.8.4. Chemical dosimetry standard for absorbed dose-to-water .............. 81
  3.8.5. Calorimetric standard for absorbed dose-to-water .......................... 82

3.9. SUMMARY OF COMMONLY USED DOSIMETRY SYSTEMS .............. 82

BIBLIOGRAPHY ...................................................................................... 84

Chapter 4. RADIATION MONITORING INSTRUMENTS

4.1. INTRODUCTION .............................................................................. 85

4.2. OPERATIONAL QUANTITIES FOR RADIATION MONITORING ....... 85

4.3. AREA SURVEY METERS ................................................................. 86
  4.3.1. Ionisation chambers ....................................................................... 88
  4.3.2. Proportional counters ................................................................... 88
  4.3.3. Neutron area survey meters ......................................................... 89
  4.3.4. GM counters ............................................................................... 90
  4.3.5. Scintillator detectors .................................................................... 90
Chapter 5. **MACHINES FOR EXTERNAL BEAM RADIOThERAPY**

5.1. INTRODUCTION ........................................................................................................ 103

5.2. X-RAY BEAMS AND X-RAY UNITS ........................................................................ 103

5.2.1. Characteristic x-rays .......................................................................................... 104
5.2.2. Bremsstrahlung (continuous) x-rays ................................................................... 104
5.2.3. X-ray targets ...................................................................................................... 104
5.2.4. Clinical x-ray beams .......................................................................................... 106
5.2.5. X-ray beam quality specifiers ............................................................................ 106
5.2.6. X-ray machines for radiotherapy ....................................................................... 107

5.3. GAMMA RAY BEAMS AND GAMMA RAY UNITS ................................................. 108

5.3.1. Basic properties of gamma rays ........................................................................... 108
5.3.2. Teletherapy machines ........................................................................................ 109
5.3.3. Teletherapy sources ........................................................................................... 109
5.3.4. Teletherapy source housing ............................................................................... 110
5.3.5. Dose delivery with teletherapy machines ....................................................... 110
5.3.6. Collimator and penumbral ............................................................................... 111

5.4. PARTICLE ACCELERATORS ................................................................................. 111

5.4.1. Betatron ........................................................................................................... 112
5.4.2. Cyclotron .......................................................................................................... 112
5.4.3. Microtron .......................................................................................................... 113

5.5. LINEAR ACCELERATORS ................................................................................... 114

5.5.1. Linac generations ............................................................................................... 114
5.5.2. Safety of linac installations ............................................................................... 115
5.5.3. Components of modern linacs .......................................................................... 115
5.5.4. Configuration of modern linacs ........................................................................ 116
5.5.5. Injection system ................................................................................................ 118
5.5.6. RF power generation system ............................................................................ 118
5.5.7. Accelerating waveguide .................................................................................... 119
Chapter 6. **EXTERNAL PHOTON BEAMS: PHYSICAL ASPECTS**

6.1. **INTRODUCTION** ................................................................. 133

6.2. **QUANTITIES USED IN DESCRIBING A PHOTON BEAM** .......... 133

6.2.1. Photon fluence and photon fluence rate .................................. 133
6.2.2. Energy fluence and energy fluence rate ................................... 134
6.2.3. Air-kerma in air .................................................................... 134
6.2.4. Exposure in air ....................................................................... 135
6.2.5. Dose to small mass of medium in air ....................................... 135

6.3. **PHOTON BEAM SOURCES** ................................................. 137

6.4. **INVERSE SQUARE LAW** ...................................................... 138

6.5. **PENETRATION OF PHOTON BEAMS INTO A PHANTOM OR PATIENT** ................................................................. 139

6.5.1. Surface dose ........................................................................ 141
6.5.2. Buildup region ...................................................................... 141
6.5.3. Depth of dose maximum ....................................................... 142
6.5.4. Exit dose ............................................................................. 142

6.6. **RADIATION TREATMENT PARAMETERS** ............................. 142

6.6.1. Radiation beam field size ..................................................... 142
6.6.2. Collimator factor ................................................................. 143
6.6.3. Peak-scatter factor $PSF$ ................................................................. 144
6.6.4. Relative dose factor $RDF$ ............................................................... 146

6.7. CENTRAL AXIS DEPTH DOSES IN WATER: SSD SET-UP .......... 148
6.7.1. Percentage depth dose $PDD$ .............................................................. 148
6.7.2. Scatter function $S$ ........................................................................ 151

6.8. CENTRAL AXIS DEPTH DOSES IN WATER: SAD SET-UP ........ 152
6.8.1. Tissue-air ratio $TAR$ ..................................................................... 152
6.8.2. Relationship between $TAR$ and $PDD$ ......................................... 154
6.8.3. Scatter-air ratio $SAR$ ...................................................................... 157
6.8.4. Relationship between $SAR$ and $S$ .............................................. 157
6.8.5. Tissue-phantom ratio $TPR$ and tissue-maximum ratio $TMR$ .... 157
6.8.6. Relationship between $TMR$ and $PDD$ ......................................... 159
6.8.7. Scatter-maximum ratio $SMR$ .......................................................... 160

6.9. OFF-AXIS RATIOS AND BEAM PROFILES .................................... 161

6.10. ISODOSE DISTRIBUTIONS IN WATER PHANTOMS .................. 163

6.11. ISODOSE DISTRIBUTIONS IN PATIENTS ..................................... 165
6.11.1. Correction for irregular contours and oblique beam incidence ..... 166
6.11.2. Missing tissue compensation ......................................................... 168
6.11.3. Corrections for tissue inhomogeneities ....................................... 169
6.11.4. Model-based algorithms ............................................................... 170

6.12. CLARKSON SEGMENTAL INTEGRATION ...................................... 170

6.13. RELATIVE MEASUREMENTS WITH IONISATION CHAMBERS ... 172

6.14. DELIVERY OF DOSE WITH A SINGLE EXTERNAL BEAM ....... 175

6.15. EXAMPLE OF DOSE CALCULATION ........................................... 176

6.16. SHUTTER CORRECTION TIME .................................................... 178

BIBLIOGRAPHY .................................................................................. 178

Chapter 7. CLINICAL TREATMENT PLANNING IN EXTERNAL PHOTON BEAM RADIOTHERAPY

7.1. INTRODUCTION ............................................................................... 179

7.2. VOLUME DEFINITION ................................................................. 179
7.2.1. Gross tumor volume (GTV) ............................................................ 180
7.2.2. Clinical target volume (CTV) ......................................................... 180
7.2.3. Internal target volume (ITV) ......................................................... 181
7.2.4. Planning target volume (PTV) ....................................................... 181
7.2.5. Organ at risk (OAR) ................................................................. 181
### 7.3. DOSE SPECIFICATION ................................................................. 182

### 7.4. PATIENT DATA ACQUISITION AND SIMULATION .............. 182

| 7.4.1. Need for patient data | 182 |
| 7.4.2. Nature of patient data | 183 |
| 7.4.3. Treatment simulation | 184 |
| 7.4.4. Patient treatment position and immobilization devices | 185 |
| 7.4.5. Patient data requirements | 186 |
| 7.4.6. Conventional treatment simulation | 188 |
| 7.4.7. Computed tomography-based conventional treatment simulation | 190 |
| 7.4.8. Computed tomography-based virtual simulation | 192 |
| 7.4.9. Conventional simulator vs. CT simulator | 196 |
| 7.4.10. Magnetic resonance imaging for treatment planning | 196 |
| 7.4.11. Summary of simulation procedures | 198 |

### 7.5. CLINICAL CONSIDERATIONS FOR PHOTON BEAMS .............. 199

| 7.5.1. Isodose curves | 199 |
| 7.5.2. Wedge filters | 199 |
| 7.5.3. Bolus | 202 |
| 7.5.4. Compensating filters | 202 |
| 7.5.5. Corrections for contour irregularities | 203 |
| 7.5.6. Corrections for tissue inhomogeneities | 205 |
| 7.5.7. Beam combinations and clinical application | 207 |

### 7.6. TREATMENT PLAN EVALUATION .......................................... 211

| 7.6.1. Isodose curves | 212 |
| 7.6.2. Orthogonal planes and isodose surfaces | 212 |
| 7.6.3. Dose statistics | 212 |
| 7.6.4. Dose-volume histograms | 213 |
| 7.6.5. Treatment evaluation | 215 |

### 7.7. TREATMENT TIME AND MONITOR UNIT CALCULATIONS ...... 218

| 7.7.1. Treatment time and monitor unit calculations for fixed SSD set-ups | 219 |
| 7.7.2. Monitor units and treatment time calculations for isocentric set-ups | 221 |
| 7.7.3. Normalization of dose distributions | 223 |
| 7.7.4. Inclusion of output parameters in dose distribution | 223 |
| 7.7.5. Treatment time calculation for orthovoltage and cobalt-60 units | 223 |

### BIBLIOGRAPHY ........................................................................... 224

---

Chapter 8. **Electron Beams: Physical and Clinical Aspects**

### 8.1. CENTRAL AXIS DEPTH DOSE DISTRIBUTIONS IN WATER ....... 225

| 8.1.1. General shape of depth dose curve | 225 |
| 8.1.2. Electron interactions with absorbing medium | 226 |
| 8.1.3. Inverse square law (virtual source position) | 227 |
| 8.1.4. Range concept (csda) | 228 |
Table of Contents

8.1.5. Buildup region (depths between surface and \( z_{\text{max}} \)) ........................................... 230
8.1.6. Dose distribution beyond \( z_{\text{max}} \) ................................................................. 231

8.2. DOSIMETRIC PARAMETERS OF ELECTRON BEAMS ............................................. 231
  8.2.1. Percentage depth dose .............................................................. 231
  8.2.2. Oblique beam incidence .......................................................... 233
  8.2.3. Output factors ....................................................................... 234
  8.2.4. Therapeutic range \( R_{90} \) ...................................................... 235
  8.2.5. Electron beam energy specification ........................................ 235
  8.2.6. Typical depth dose parameters as a function of energy ............ 235
  8.2.7. Profiles and off-axis ratios .................................................... 236
  8.2.8. Flatness and symmetry ............................................................ 236

8.3. CLINICAL CONSIDERATIONS IN ELECTRON BEAM THERAPY ... 237
  8.3.1. Dose specification and reporting ............................................. 237
  8.3.2. Bolus-electron range modifier ................................................ 237
  8.3.3. Small field sizes ................................................................... 237
  8.3.4. Isodose curves ..................................................................... 238
  8.3.5. Field shaping ....................................................................... 239
  8.3.6. Irregular surface correction .................................................... 241
  8.3.7. Inhomogeneity corrections ..................................................... 243
  8.3.8. Electron beam combinations ................................................ 244
  8.3.9. Electron arc therapy ............................................................... 245
  8.3.10. Electron therapy treatment planning .................................... 247

BIBLIOGRAPHY ............................................................................................. 248

Chapter 9. CALIBRATION OF PHOTON AND ELECTRON BEAMS

9.1. INTRODUCTION ......................................................................................... 249
  9.1.1. Calorimetry ............................................................................. 250
  9.1.2. Fricke dosimetry .................................................................... 251
  9.1.3. Ionisation chamber dosimetry ................................................ 251
  9.1.4. Reference dosimetry with ionisation chambers .................... 252
  9.1.5. Clinical beam calibration and measurement chain ................. 253
  9.1.6. Dosimetry protocols ................................................................. 254

9.2. IONISATION CHAMBER-BASED DOSIMETRY SYSTEMS .......... 254
  9.2.1. Ionisation chambers ................................................................. 254
  9.2.2. Electrometer and power supply ............................................... 256
  9.2.3. Phantoms ................................................................................ 256

9.3. CHAMBER SIGNAL CORRECTION FOR INFLUENCE
  QUANTITIES ................................................................................................. 257
  9.3.1. Air temperature, pressure and humidity effects: \( k_{TP} \) .............. 257
  9.3.2. Chamber polarity effects: polarity correction factor \( k_{\text{pol}} \) .......... 258
  9.3.3. Chamber voltage effects: recombination correction factor \( k_{\text{sat}} \) ......... 259
  9.3.4. Chamber leakage currents ....................................................... 262
  9.3.5. Chamber stem effects .............................................................. 263
9.4. DETERMINATION OF ABSORBED DOSE USING CALIBRATED IONISATION CHAMBERS ........................................... 264
  9.4.1. Air-kerma-based protocols ........................................... 264
  9.4.2. Absorbed dose-to-water-based protocols ......................... 266

9.5. STOPPING-POWER RATIOS ............................................... 269
  9.5.1. Stopping-power ratios for electron beams ......................... 269
  9.5.2. Stopping-power ratios for photon beams .......................... 270

9.6. MASS ENERGY–ABSORPTION COEFFICIENT RATIOS .......... 270

9.7. PERTURBATION CORRECTION FACTORS ............................. 271
  9.7.1. Displacement perturbation factor \( p_{\text{dis}} \) and effective point of Measurement ............................................. 272
  9.7.2. The chamber wall perturbation factor \( p_{\text{wall}} \) .................. 273
  9.7.3. Central electrode perturbation \( p_{\text{cel}} \) ............................. 275
  9.7.4. Cavity or fluence perturbation correction \( p_{\text{cav}} \) ............. 275

9.8. BEAM QUALITY SPECIFICATION ......................................... 277
  9.8.1. Beam quality specification for kilovoltage photon beams ....... 277
  9.8.2. Beam quality specification for megavoltage photon beams .... 278
  9.8.3. Beam quality specification for megavoltage electron beams .... 279

9.9. CALIBRATION OF MEGAVOLTAGE PHOTON AND ELECTRON BEAMS: PRACTICAL ASPECTS ................................. 282
  9.9.1. Calibration of megavoltage photon beams based upon air-kerma in air calibration coefficient \( N_{K,Co} \) ......................... 282
  9.9.2. Calibration of megavoltage photon beams based on dose-to-water calibration coefficient \( N_{D,w,Co} \) .......................... 283
  9.9.3. Calibration of megavoltage electron beams based upon air-kerma in air calibration coefficient \( N_{K,Co} \) ..................... 284
  9.9.4. Calibration of high-energy electron beams based upon dose-to-water calibration coefficient \( N_{D,w,Co} \) ..................... 285

9.10. KILOVOLTAGE DOSIMETRY ........................................... 286
  9.10.1. Specificities of kilovoltage beams ................................. 287
  9.10.2. The air-kerma-based in-phantom calibration method (medium energies) ......................................................... 288
  9.10.3. The air-kerma-based backscatter method (low and medium photon energies) ..................................................... 288
  9.10.4. Air-kerma in air calibration method for very low energies ... 289
  9.10.5. Absorbed dose to water-based calibration method .............. 290

9.11. ERROR AND UNCERTAINTY ANALYSIS FOR IONISATION CHAMBER MEASUREMENTS ......................................... 290
  9.11.1. Errors and uncertainties ............................................. 290
### Table of Contents

9.11.2. Classification of uncertainties .............................................. 291  
9.11.3. Uncertainties in the calibration chain ..................................... 291  

**BIBLIOGRAPHY** .................................................................................. 291

#### Chapter 10. **Acceptance Tests and Commissioning**

10.1. **Introduction** .................................................................................. 293

10.2. **Measurement Equipment** .......................................................... 293  
  10.2.1. Radiation survey equipment ....................................................... 293  
  10.2.2. Ionometric dosimetry equipment ............................................... 293  
  10.2.3. Film ............................................................................................ 294  
  10.2.4. Diodes ........................................................................................ 294  
  10.2.5. Phantoms .................................................................................... 294

10.3. **Acceptance Tests** ........................................................................ 295  
  10.3.1. Safety checks ................................................................................ 296  
  10.3.2. Mechanical checks ..................................................................... 297  
  10.3.3. Dosimetry measurements ............................................................ 301

10.4. **Commissioning** ........................................................................... 304  
  10.4.1. Photon beam measurements ....................................................... 304  
  10.4.2. Electron beam measurements ..................................................... 310

10.5. **Time Required for Commissioning** ............................................ 315  

**BIBLIOGRAPHY** .................................................................................. 316

#### Chapter 11. **Computerized Treatment Planning Systems for External Beam Radiotherapy**

11.1. **Introduction** .................................................................................. 317

11.2. **System Hardware** ........................................................................ 318  
  11.2.1. Treatment planning system hardware .......................................... 318  
  11.2.2. Treatment planning system configurations .................................... 319

11.3. **System Software and Calculation Algorithms** ............................... 319  
  11.3.1. Calculation algorithms ............................................................... 320  
  11.3.2. Beam modifiers .......................................................................... 322  
  11.3.3. Heterogeneity corrections ........................................................... 324  
  11.3.4. Image display and dose volume histograms ................................ 324  
  11.3.5. Optimization ............................................................................. 325  
  11.3.6. Record and verify (RV) systems ................................................ 325  
  11.3.7. Biological modeling ................................................................... 326

11.4. **Data Acquisition and Entry** .......................................................... 326
11.4.1. Machine data ................................................................. 326
11.4.2. Beam data acquisition and entry .................................... 327
11.4.3. Patient data .................................................................... 328

11.5. COMMISSIONING AND QUALITY ASSURANCE ............. 329
11.5.1. Errors ............................................................................. 329
11.5.2. Verification ................................................................. 329
11.5.3. Spot checks ................................................................. 330
11.5.4. Normalization and beam weighting ................................. 330
11.5.5. Dose volume histograms and optimization ...................... 331
11.5.6. Training and documentation .......................................... 331
11.5.7. Scheduled quality assurance ........................................... 331

11.6. SPECIAL CONSIDERATIONS ........................................... 332

BIBLIOGRAPHY ................................................................. 333

Chapter 12. QUALITY ASSURANCE OF EXTERNAL BEAM RADIOThERAPY

12.1. INTRODUCTION ................................................................. 335
12.1.1. Definitions ................................................................. 335
12.1.2. The need for quality assurance in radiotherapy ................. 336
12.1.3. Requirements on accuracy in radiotherapy ...................... 336
12.1.4. Accidents in radiotherapy ............................................. 338

12.2. MANAGING A QA PROGRAMME ..................................... 340
12.2.1. Multidisciplinary radiotherapy team .............................. 340
12.2.2. Quality system/comprehensive QA programme ............... 342

12.3. QUALITY ASSURANCE PROGRAMME FOR EQUIPMENT .... 343
12.3.1. The structure of an equipment QA programme .................. 344
12.3.2. Uncertainties, tolerances and action levels ....................... 347
12.3.3. QA programme for cobalt-60 teletherapy machines ........... 348
12.3.4. QA programme for linear accelerators ........................... 350
12.3.5. QA programme for treatment simulators .......................... 352
12.3.6. QA programme for CT scanners and CT-simulation .................. 353
12.3.7. QA programme for treatment planning systems ............... 354
12.3.8. QA programme for test equipment .................................. 356

12.4. TREATMENT DELIVERY .................................................. 357
12.4.1. Patient charts ............................................................. 357
12.4.2. Portal imaging ............................................................ 358
12.4.3. In-vivo dose measurements ........................................... 361
12.4.4. Record-and-verify systems ............................................ 365

12.5. QUALITY AUDIT ............................................................. 366
12.5.1. Definition ................................................................. 366
12.5.2. Practical quality audit modalities ................................... 366
Table of Contents

12.5.3. What should be reviewed in a quality audit visit? ...................... 366

BIBLIOGRAPHY ...................................................................................... 367

Chapter 13. **BRACHYTHERAPY: PHYSICAL AND CLINICAL ASPECTS**

13.1. INTRODUCTION ........................................................................... 371

13.2. PHOTON SOURCE CHARACTERISTICS ........................................... 374
   13.2.1. Practical considerations ......................................................... 374
   13.2.2. Physical characteristics of some photon-emitting brachytherapy sources ........................................ 374
   13.2.3. Mechanical source characteristics .......................................... 375
   13.2.4. Source specification .............................................................. 376
   13.2.5. Specification of gamma ray sources ........................................ 376
   13.2.6. Specification of beta ray sources ............................................ 378

13.3. CLINICAL USE AND DOSIMETRY SYSTEMS ............................... 378
   13.3.1. Gynecology .............................................................................. 378
   13.3.2. Interstitial brachytherapy ........................................................ 379
   13.3.3. Remote afterloading systems ................................................... 380
   13.3.4. Permanent prostate implants .................................................. 381
   13.3.5. Eye plaques .............................................................................. 382
   13.3.6. Intravascular brachytherapy .................................................... 383

13.4. DOSE SPECIFICATION AND REPORTING .................................... 383
   13.4.1. Intracavitary treatments (ICRU Report 38) .............................. 383
   13.4.2. Interstitial treatments (ICRU Report 58) ................................. 384

13.5. DOSE DISTRIBUTIONS AROUND SOURCES ............................... 384
   13.5.1. AAPM TG-43 algorithm .......................................................... 384
   13.5.2. Other calculation methods for point sources ................................ 386
   13.5.3. Linear sources ......................................................................... 388

13.6. DOSE CALCULATION PROCEDURES ......................................... 389
   13.6.1. Manual dose calculations ......................................................... 389
   13.6.2. Computerized treatment planning .......................................... 390
   13.6.3. Calculation of treatment time ................................................. 391

13.7. COMMISSIONING OF BRACHYTHERAPY COMPUTER TREATMENT PLANNING SYSTEMS .................... 392
   13.7.1. Check of the reconstruction procedure ..................................... 392
   13.7.2. Check of consistency between quantities and units .................. 392
   13.7.3. Computer vs. manual dose calculation for single source .......... 392
   13.7.4. Check of decay corrections ..................................................... 393

13.8. SOURCE COMMISSIONING .......................................................... 393
   13.8.1. Wipe tests .............................................................................. 393

xviii
Chapter 13. **QUALITY ASSURANCE** .......................................................... 394
13.8.2. Autoradiography and uniformity checks of activity ....... 393
13.8.3. Calibration chain ................................................................. 393
13.9.1. Constancy check of calibrated dosimeter ................. 394
13.9.2. Regular checks of sources and applicators .......... 394
13.9.3. Checks of source positioning with afterloading devices .... 394
13.9.4. Radiation monitoring around patients .................. 394
13.9.5. Quality management programme .......................... 395

Chapter 14. **BASIC RADIOBIOLOGY**

14.1. **INTRODUCTION** ............................................................... 397

14.2. **CLASSIFICATION OF RADIATIONS IN RADIOBIOLOGY** .... 398

14.3. **CELL CYCLE AND CELL DEATH** ........................................ 399

14.4. **IRRADIATION OF CELLS** .................................................. 399
14.4.1. Direct action in cell damage by radiation ............ 399
14.4.2. Indirect action of cell damage by radiation ........... 400
14.4.3. Fate of irradiated cells .............................................. 400

14.5. **TYPE OF RADIATION DAMAGE** ......................................... 401
14.5.1. Time scale ................................................................. 401
14.5.2. Classification of radiation damage ..................... 401
14.5.3. Somatic and genetic effects ............................... 401
14.5.4. Stochastic and deterministic effects .................... 402
14.5.5. Acute vs. chronic effects .................................... 402
14.5.6. Total body radiation response .......................... 402
14.5.7. Fetal irradiation ...................................................... 403

14.6. **CELL SURVIVAL CURVES** ................................................ 403

14.7. **DOSE-RESPONSE CURVES** ............................................... 405

14.8. **MEASUREMENT OF RADIATION DAMAGE IN TISSUE** ...... 407

14.9. **NORMAL AND TUMOR CELLS: THERAPEUTIC RATIO** .... 407

14.10. **OXYGEN EFFECT** ............................................................ 408

14.11. **RELATIVE BIOLOGICAL EFFECTIVENESS** .................... 410

14.12. **DOSE RATE AND FRACTIONATION** .............................. 411
Table of Contents

14.13. RADIOPROTECTORS AND RADIOSENSITIZERS ................................. 412

BIBLIOGRAPHY .................................................................................. 412

Chapter 15. SPECIAL PROCEDURES AND TECHNIQUES IN RADIOTHERAPY

15.1. INTRODUCTION ........................................................................... 413

15.2. STEREOTACTIC IRRADIATION .................................................... 413
    15.2.1. Physical and clinical requirements for radiosurgery .......... 414
    15.2.2. Diseases treated with stereotactic irradiation ................. 415
    15.2.3. Equipment used for stereotactic radiosurgery ............... 415
    15.2.4. Historical development ..................................................... 415
    15.2.5. Radiosurgical techniques .................................................. 416
    15.2.6. Uncertainty in radiosurgical dose delivery ..................... 419
    15.2.7. Dose prescription and dose fractionation ....................... 419
    15.2.8. Commissioning of radiosurgical equipment .................... 420
    15.2.9. Quality assurance in radiosurgery ................................... 420
    15.2.10. Gamma knife versus linac-based radiosurgery .............. 421
    15.2.11. Frameless stereotaxy ....................................................... 421

15.3. TOTAL BODY IRRADIATION (TBI) ............................................. 422
    15.3.1. Clinical TBI categories ..................................................... 422
    15.3.2. Diseases treated with TBI ............................................... 422
    15.3.3. Technical aspects of TBI .................................................. 423
    15.3.4. TBI techniques ............................................................... 423
    15.3.5. Dose prescription point .................................................... 423
    15.3.6. Commissioning of TBI procedure ................................. 423
    15.3.7. Test of TBI dosimetry protocol ..................................... 424
    15.3.8. Quality assurance in TBI ................................................. 424

15.4. TOTAL SKIN ELECTRON IRRADIATION (TSEI) ......................... 427
    15.4.1. Physical and clinical requirements for TSEI .................... 427
    15.4.2. Current TSEI techniques ............................................... 428
    15.4.3. Selection of TSEI technique .......................................... 429
    15.4.4. Dose calibration point .................................................... 429
    15.4.5. Skin dose rate at the dose prescription point ................. 429
    15.4.6. Commissioning of TSEI procedure ............................... 429
    15.4.7. Measurement of clinical TSEI dose distributions .......... 430
    15.4.8. Quality assurance in TSEI ............................................. 430

15.5. INTRAOPERATIVE RADIOTHERAPY (IORT) ............................. 431
    15.5.1. Physical and clinical requirements for IORT ................. 431
    15.5.2. IORT radiation modalities and techniques .................... 431
    15.5.3. Commissioning an IORT programme ........................... 432
    15.5.4. Quality assurance in IORT ............................................ 432

15.6. ENDOCAVITARY RECTAL IRRADIATION .................................. 433
15.6.1. Physical and clinical requirements for endorectal irradiation .......... 433
15.6.2. Endorectal treatment technique ...................................................... 434
15.6.3. Quality assurance in endorectal treatments ..................................... 434

15.7. CONFORMAL RADIOTHERAPY ........................................................... 435
15.7.1. Basic aspects of conformal radiotherapy ........................................ 435
15.7.2. Multileaf collimators ........................................................................ 435
15.7.3. Acceptance testing of MLCs .......................................................... 436
15.7.4. Commissioning of MLCs ............................................................... 437
15.7.5. Quality assurance programme for MLCs ....................................... 437
15.7.6. Intensity Modulated Radiation Therapy (IMRT) ........................... 437
15.7.7. Commissioning of IMRT systems .................................................. 438
15.7.8. Quality assurance for IMRT systems ............................................. 439
15.7.9. Dose verification for IMRT treatment plans .................................... 440

15.8. IMAGE-GUIDED RADIATION THERAPY .......................................... 440
15.8.1. The BAT system .............................................................................. 441
15.8.2. The ExacTrac ultrasonic module ..................................................... 441
15.8.3. CT Primatom ................................................................................... 441
15.8.4. Tomotherapy ................................................................................... 442
15.8.5. CyberKnife ...................................................................................... 442

15.9. RESPIRATORY GATED RADIATION THERAPY .............................. 443

15.10. PET/CT SCANNERS AND PET/CT IMAGE FUSION ..................... 444

BIBLIOGRAPHY ........................................................................................ 446

Chapter 16. RADIATION PROTECTION AND SAFETY IN RADIOTHERAPY

16.1. INTRODUCTION .................................................................................. 447

16.2. RADIATION EFFECTS ........................................................................ 448
16.2.1. Deterministic effects ....................................................................... 448
16.2.2. Stochastic effects ............................................................................. 448
16.2.3. Effects on embryo and fetus .......................................................... 448

16.3. INTERNATIONAL CONSENSUS AND RADIATION SAFETY STANDARDS .. 449

16.4. TYPES OF RADIATION EXPOSURE .................................................. 449

16.5. QUANTITIES AND UNITS USED IN RADIATION PROTECTION ...... 450
16.5.1. Physical quantities .......................................................................... 450
16.5.2. Radiation protection quantities ....................................................... 451
16.5.3. Operational quantities ..................................................................... 454

16.6. BASIC FRAMEWORK OF RADIATION PROTECTION ........................ 455
# Table of Contents

16.7. **GOVERNMENTAL REGULATION AND INFRASTRUCTURE** ........ 456

16.8. **SCOPE OF THE BASIC SAFETY STANDARDS** .................... 457

16.9. **RESPONSIBILITY FOR IMPLEMENTATION OF THE BASIC SAFETY STANDARDS REQUIREMENTS** ..................... 457

16.10. **SAFETY IN THE DESIGN OF RADIATION SOURCES AND EQUIPMENT** .................................................. 458

  16.10.1. Equipment .............................................. 458
  16.10.2. Sealed sources ........................................ 460
  16.10.3. Safety in design of facilities and ancillary equipment .... 461

16.11. **SAFETY ASSOCIATED WITH ACCEPTANCE TESTS, COMMISSIONING AND OPERATION** ........................................ 464

  16.11.1. Safe operation of external beam radiotherapy .......... 465
  16.11.2. Safe operation of brachytherapy ..................... 465

16.12. **SECURITY OF SOURCES** ............................................. 467

16.13. **OCCUPATIONAL EXPOSURE** ........................................ 468

  16.13.1. Responsibilities and conditions of service ............... 468
  16.13.2. The use of dose constraints in radiotherapy .......... 469
  16.13.3. Investigation levels for staff exposure in radiotherapy .. 469
  16.13.4. Pregnant workers ........................................ 469
  16.13.5. Classification of areas ................................... 470
  16.13.6. Local rules and supervision ................................ 470
  16.13.7. Protective equipment and tools .......................... 470
  16.13.9. Monitoring the workplace .................................. 471
  16.13.10. Health surveillance ...................................... 472
  16.13.11. Records .................................................. 472

16.14. **MEDICAL EXPOSURE** .................................................. 473

  16.14.2. Justification of medical exposure .......................... 473
  16.14.3. Optimization of exposure and protection ................ 474
  16.14.5. Clinical dosimetry ........................................ 476
  16.14.7. Constraints for comforters and visitors ................... 477

16.15. **PUBLIC EXPOSURE** ..................................................... 479

  16.15.1. Responsibilities .............................................. 479
  16.15.2. Access control for visitors ................................... 479
  16.15.3. Radioactive waste and sources no longer in use .......... 479
  16.15.4. Monitoring of public exposure ............................. 479