Table of Contents

1 Introduction ... 1
 1.1 Legalese ... 1
 1.2 Obtaining this document 1
 1.3 Citing this document 1
 1.4 Notation .. 1
 1.5 Feedback ... 2

2 R Basics .. 3
 2.1 What is R? ... 3
 2.2 What machines does R run on? 3
 2.3 What is the current version of R? 4
 2.4 How can R be obtained? 4
 2.5 How can R be installed? 4
 2.5.1 How can R be installed (Unix) 4
 2.5.2 How can R be installed (Windows) 5
 2.5.3 How can R be installed (Macintosh) 5
 2.6 Are there Unix binaries for R? 6
 2.7 What documentation exists for R? 7
 2.8 Citing R ... 8
 2.9 What mailing lists exist for R? 9
 2.10 What is CRAN? 10
 2.11 Can I use R for commercial purposes? 11
 2.12 Why is R named R? 11
 2.13 What is the R Foundation? 11

3 R and S ... 13
 3.1 What is S? ... 13
 3.2 What is S-PLUS? 13
 3.3 What are the differences between R and S? 13
 3.3.1 Lexical scoping 14
 3.3.2 Models ... 17
 3.3.3 Others ... 17
 3.4 Is there anything R can do that S-PLUS cannot? 19
 3.5 What is R-plus? 20

4 R Web Interfaces ... 21
5 R Add-On Packages 23
 5.1 Which add-on packages exist for R? 23
 5.1.1 Add-on packages in R 23
 5.1.2 Add-on packages from CRAN 23
 5.1.3 Add-on packages from Omegahat 81
 5.1.4 Add-on packages from Bioconductor 83
 5.1.5 Other add-on packages 93
 5.2 How can add-on packages be installed? 94
 5.3 How can add-on packages be used? 94
 5.4 How can add-on packages be removed? 95
 5.5 How can I create an R package? 96
 5.6 How can I contribute to R? 96

6 R and Emacs .. 97
 6.1 Is there Emacs support for R? 97
 6.2 Should I run R from within Emacs? 97
 6.3 Debugging R from within Emacs 98

7 R Miscellanea ... 99
 7.1 How can I set components of a list to NULL? 99
 7.2 How can I save my workspace? 99
 7.3 How can I clean up my workspace? 99
 7.4 How can I get eval() and D() to work? 99
 7.5 Why do my matrices lose dimensions? 100
 7.6 How does autoloading work? 100
 7.7 How should I set options? 100
 7.8 How do file names work in Windows? 101
 7.9 Why does plotting give a color allocation error? ... 101
 7.10 How do I convert factors to numeric? 101
 7.11 Are Trellis displays implemented in R? 101
 7.12 What are the enclosing and parent environments? ... 102
 7.13 How can I substitute into a plot label? 102
 7.14 What are valid names? 103
 7.15 Are GAMs implemented in R? 103
 7.16 Why is the output not printed when I source() a file? 104
 7.17 Why does outer() behave strangely with my function? 104
 7.18 Why does the output from anova() depend on the order of factors in the model? 105
 7.19 How do I produce PNG graphics in batch mode? 105
 7.20 How can I get command line editing to work? 105
 7.21 How can I turn a string into a variable? 106
 7.22 Why do lattice/trellis graphics not work? 106
 7.23 How can I sort the rows of a data frame? 106
 7.24 Why does the help.start() search engine not work? ... 106
 7.25 Why did my .Rprofile stop working when I updated R? 107
 7.26 Where have all the methods gone? 107
 7.27 How can I create rotated axis labels? 107
7.28 Why is read.table() so inefficient? 108
7.29 What is the difference between package and library? 108
7.30 I installed a package but the functions are not there 108
7.31 Why doesn’t R think these numbers are equal? 108
7.32 How can I capture or ignore errors in a long simulation?

................................. 109
7.33 Why are powers of negative numbers wrong? 109
7.34 How can I save the result of each iteration in a loop into a separate file? 109
7.35 Why are p-values not displayed when using lmer()? 110
7.36 Why are there unwanted lines between polygons in PDF output viewed in Adobe Reader? 110
7.37 Why does backslash behave strangely inside strings? 110

8 R Programming ... 112
8.1 How should I write summary methods? 112
8.2 How can I debug dynamically loaded code? 112
8.3 How can I inspect R objects when debugging? 112
8.4 How can I change compilation flags? 112
8.5 How can I debug S4 methods? 112

9 R Bugs .. 113
9.1 What is a bug? ... 113
9.2 How to report a bug 113

10 Acknowledgments 116
Chapter 1: Introduction

1 Introduction

This document contains answers to some of the most frequently asked questions about R.

1.1 Legalese

This document is copyright © 1998–2008 by Kurt Hornik.

This document is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

A copy of the GNU General Public License is available via WWW at
You can also obtain it by writing to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, U.S.A.

1.2 Obtaining this document

The latest version of this document is always available from
http://CRAN.R-project.org/doc/FAQ/

You can also obtain the R FAQ from the ‘doc/FAQ’ subdirectory of a CRAN site (see [What is CRAN?], page (undefined)).

1.3 Citing this document

In publications, please refer to this FAQ as Hornik (2008), “The R FAQ”, and give the above, official URL and the ISBN 3-900051-08-9:

@Misc{
 author = {Kurt Hornik},
 title = {The R FAQ},
 year = {2008},
 note = {ISBN 3-900051-08-9},
 url = {http://CRAN.R-project.org/doc/FAQ/R-FAQ.html}
}
Chapter 1: Introduction

1.4 Notation

Everything should be pretty standard. ‘R>’ is used for the R prompt, and a ‘$’ for the shell prompt (where applicable).

1.5 Feedback

Feedback via email to Kurt.Hornik@R-project.org is of course most welcome.

In particular, note that I do not have access to Windows or Macintosh systems. Features specific to the Windows and Mac OS X ports of R are described in the http://CRAN.R-project.org/bin/windows/base/rw-FAQ.html, ‘‘R for Windows FAQ’’, and the http://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html, ‘‘R for Mac OS X FAQ’’. If you have information on Macintosh or Windows systems that you think should be added to this document, please let me know.
2 R Basics

2.1 What is R?

R is a system for statistical computation and graphics. It consists of a language plus a run-time environment with graphics, a debugger, access to certain system functions, and the ability to run programs stored in script files.

The design of R has been heavily influenced by two existing languages: Becker, Chambers & Wilks’ S (see [What is S?], page [undefined]) and Sussman’s Scheme. Whereas the resulting language is very similar in appearance to S, the underlying implementation and semantics are derived from Scheme. See [What are the differences between R and S?], page [undefined], for further details.

The core of R is an interpreted computer language which allows branching and looping as well as modular programming using functions. Most of the user-visible functions in R are written in R. It is possible for the user to interface to procedures written in the C, C++, or FORTRAN languages for efficiency. The R distribution contains functionality for a large number of statistical procedures. Among these are: linear and generalized linear models, nonlinear regression models, time series analysis, classical parametric and nonparametric tests, clustering and smoothing. There is also a large set of functions which provide a flexible graphical environment for creating various kinds of data presentations. Additional modules (“add-on packages”) are available for a variety of specific purposes (see [R Add-On Packages], page [undefined]).

R was initially written by Ross Ihaka and Robert Gentleman at the Department of Statistics of the University of Auckland in Auckland, New Zealand. In addition, a large group of individuals has contributed to R by sending code and bug reports.

Since mid-1997 there has been a core group (the “R Core Team”) who can modify the R source code archive. The group currently consists of Doug Bates, John Chambers, Peter Dalgaard, Robert Gentleman, Kurt Hornik, Stefano Iacus, Ross Ihaka, Friedrich Leisch, Thomas Lumley, Martin Maechler, Duncan Murdoch, Paul Murrell, Martyn Plummer, Brian Ripley, Duncan Temple Lang, Luke Tierney, and Simon Urbanek.

2.2 What machines does R run on?

R is being developed for the Unix, Windows and Mac families of operating systems. Support for Mac OS Classic ended with R 1.7.1.

The current version of R will configure and build under a number of common Unix platforms including cpu-linux-gnu for the i386, alpha, arm, hppa, ia64, m68k, mips/mipsel, powerpc, s390, sparc (e.g., http://buildd.debian.org/build.php?&pkg=r-base), and x86_64 CPUs, powerpc-apple-darwin, mips-sgi-irix, rs6000-ibm-aix, and sparc-sun-solaris.

If you know about other platforms, please drop us a note.
2.3 What is the current version of R?

The current released version is 2.7.0. Based on this ‘major.minor.patchlevel’ numbering scheme, there are two development versions of R, a patched version of the current release (‘r-patched’) and one working towards the next minor or eventually major (‘r-devel’) releases of R, respectively. Version r-patched is for bug fixes mostly. New features are typically introduced in r-devel.

2.4 How can R be obtained?

Sources, binaries and documentation for R can be obtained via CRAN, the “Comprehensive R Archive Network” (see [What is CRAN?], page [undefined]). Sources are also available via https://svn.R-project.org/R/, the R Subversion repository, but currently not via anonymous rsync (nor CVS).

Tarballs with daily snapshots of the r-devel and r-patched development versions of R can be found at ftp://ftp.stat.math.ethz.ch/Software/R.

2.5 How can R be installed?

2.5.1 How can R be installed (Unix)

If R is already installed, it can be started by typing R at the shell prompt (of course, provided that the executable is in your path).

If binaries are available for your platform (see [Are there Unix binaries for R?], page [undefined]), you can use these, following the instructions that come with them.

Otherwise, you can compile and install R yourself, which can be done very easily under a number of common Unix platforms (see [What machines does R run on?], page [undefined]). The file ‘INSTALL’ that comes with the R distribution contains a brief introduction, and the “R Installation and Administration” guide (see [What documentation exists for R?], page [undefined]) has full details.

Note that you need a FORTRAN compiler or perhaps f2c in addition to a C compiler to build R. Also, you need Perl version 5 to build the R object documentations. (If this is not available on your system, you can obtain a PDF version of the object reference manual via CRAN.)

In the simplest case, untar the R source code, change to the directory thus created, and issue the following commands (at the shell prompt):

```
$ ./configure
$ make
```

If these commands execute successfully, the R binary and a shell script front-end called ‘R’ are created and copied to the ‘bin’ directory. You can copy the script to a place where users can invoke it, for example to ‘/usr/local/bin’. In addition, plain text help pages as well as HTML and versions of the documentation are built.
Use `make dvi` to create DVI versions of the R manuals, such as ‘refman.dvi’ (an R object reference index) and ‘R-exts.dvi’, the “R Extension Writers Guide”, in the ‘doc/manual’ subdirectory. These files can be previewed and printed using standard programs such as xdvi and dvips. You can also use `make pdf` to build PDF (Portable Document Format) version of the manuals, and view these using e.g. Acrobat. Manuals written in the GNU Texinfo system can also be converted to info files suitable for reading online with Emacs or stand-alone GNU Info; use `make info` to create these versions (note that this requires Makeinfo version 4.5).

Finally, use `make check` to find out whether your R system works correctly.

You can also perform a “system-wide” installation using `make install`. By default, this will install to the following directories:

`${prefix}/bin`

the front-end shell script

`${prefix}/man/man1`

the man page

`${prefix}/lib/R`

all the rest (libraries, on-line help system, ...). This is the “R Home Directory” (R_HOME) of the installed system.

In the above, prefix is determined during configuration (typically ‘/usr/local’) and can be set by running configure with the option

```
$ ./configure --prefix=/where/you/want/R/to/go
```

(E.g., the R executable will then be installed into ‘/where/you/want/R/to/go/bin’.)

To install DVI, info and PDF versions of the manuals, use `make install-dvi`, `make install-info` and `make install-pdf`, respectively.

2.5.2 How can R be installed (Windows)

The ‘bin/windows’ directory of a CRAN site contains binaries for a base distribution and a large number of add-on packages from CRAN to run on Windows 95, 98, ME, NT4, 2000, and XP (at least) on Intel and clones (but not on other platforms). The Windows version of R was created by Robert Gentleman and Guido Masarotto, and is now being developed and maintained by Duncan Murdoch and Brian D. Ripley.

For most installations the Windows installer program will be the easiest tool to use.

See the http://CRAN.R-project.org/bin/windows/baserw-FAQ.html, ‘R for Windows FAQ’ for more details.

2.5.3 How can R be installed (Macintosh)

The ‘bin/macosx’ directory of a CRAN site contains a standard Apple installer package inside a disk image named ‘R.dmg’. Once downloaded and executed, the installer will install the current non-developer release of R. RAqua is a native Mac OS X Darwin version of R with a R.app Mac OS X GUI. Inside ‘bin/macosx/powerpc/contrib/x.y’ there are
prebuilt binary packages (for powerpc version of Mac OS X) to be used with RAqua cor-
responding to the “x.y” release of R. The installation of these packages is available through
the “Package” menu of the R.app GUI. This port of R for Mac OS X is maintained by Ste-
fano Iacus. The http://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html, “R for
Mac OS X FAQ has more details.

The ‘bin/macos’ directory of a CRAN site contains bin-hexed (‘hqx’) and stuffit (‘sit’) archives
for a base distribution and a large number of add-on packages of R 1.7.1 to run under Mac OS 8.6 to Mac OS 9.2.2. This port of R for Macintosh is no longer supported.

2.6 Are there Unix binaries for R?

The ‘bin/linux’ directory of a CRAN site contains the following packages.

<table>
<thead>
<tr>
<th>CPU</th>
<th>Versions</th>
<th>Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debian</td>
<td>i386/amd64</td>
<td>stable/oldstable</td>
</tr>
<tr>
<td>Red Hat</td>
<td>i386/x86_64</td>
<td>fedora7/fedora8</td>
</tr>
<tr>
<td></td>
<td>i386/x86_64</td>
<td>el4/el5</td>
</tr>
<tr>
<td>SuSE</td>
<td>586/x86_64</td>
<td>10.0/10.1/10.2/10.3</td>
</tr>
<tr>
<td>Ubuntu</td>
<td>i386</td>
<td>dapper/feisty/gutsy</td>
</tr>
<tr>
<td></td>
<td>amd64</td>
<td>dapper/feisty/gutsy</td>
</tr>
</tbody>
</table>

Debian packages, maintained by Dirk Eddelbuettel and Doug Bates, have long been part
of the Debian distribution, and can be accessed through APT, the Debian package mainte-
nance tool. Use e.g. **`apt-get install r-base r-recommended`** to install the R environment
and recommended packages. If you also want to build R packages from source, also run
`apt-get install r-base-dev` to obtain the additional tools required for this. So-called
“backports” of the current R packages for the **stable** distribution of Debian are provided by
Johannes Ranke, and available from CRAN. Simply add the line

```bash
deb http://CRAN.R-project.org/bin/linux/debian stable/
```

(feel free to use a CRAN mirror instead of the master) to the file ‘*/etc/apt/sources.list’,
and install as usual. More details on installing and administering R on Debian Linux can
be found at http://CRAN.R-project.org/bin/linux/debian/README. These backports
should also be suitable for other Debian derivatives. Native backports for Ubuntu are
provided by Vincent Goulet and Michael Rutter.

On SUSE, you can set up an installation source for R within Yast by setting (e.g.)

- **Protocol:** HTTP
- **Server name:** software.openSUSE.org
- **Directory:** /download/home/:dsteuer/openSUSE_10.2/

With this setting, online updates will check for new versions of R.

No other binary distributions are currently publically available via CRAN.

A “live” Linux distribution with a particular focus on R is Quantian, which provides
a directly bootable and self-configuring “Live DVD” containing numerous applications of
interests to scientists and researchers, including several hundred CRAN and Bioconductor
packages, the “ESS” extensions for Emacs, the “JGR” Java GUI for R, the Ggobi
visualization tool as well as several other R interfaces. The Quantian website at
http://dirk.eddelbuettel.com/quantian/ contains more details as well download
information.
2.7 What documentation exists for R?

Online documentation for most of the functions and variables in R exists, and can be printed on-screen by typing `help(name)` (or `?name`) at the R prompt, where `name` is the name of the topic help is sought for. (In the case of unary and binary operators and control-flow special forms, the name may need to be be quoted.)

This documentation can also be made available as one reference manual for on-line reading in HTML and PDF formats, and as hardcopy via, see (undefined) [How can R be installed?], page (undefined). An up-to-date HTML version is always available for web browsing at http://stat.ethz.ch/R-manual/.

Printed copies of the R reference manual for some version(s) are available from Network Theory Ltd, at http://www.network-theory.co.uk/R/base/. For each set of manuals sold, the publisher donates USD 10 to the R Foundation (see (undefined) [What is the R Foundation?], page (undefined)).

The R distribution also comes with the following manuals.

- “An Introduction to R” (‘R-intro’) includes information on data types, programming elements, statistical modeling and graphics. This document is based on the “Notes on S-PLUS” by Bill Venables and David Smith.
- “Writing R Extensions” (‘R-exts’) currently describes the process of creating R add-on packages, writing R documentation, R’s system and foreign language interfaces, and the R API.
- “R Data Import/Export” (‘R-data’) is a guide to importing and exporting data to and from R.
- “The R Language Definition” (‘R-lang’), a first version of the “Kernighan & Ritchie of R”, explains evaluation, parsing, object oriented programming, computing on the language, and so forth.
- “R Installation and Administration” (‘R-admin’).
- “R Internals” (‘R-ints’) is a guide to R’s internal structures. (Added in R 2.4.0.)

Books on R include

The book

has a home page at http://www.stats.ox.ac.uk/pub/MASS4/ providing additional material. Its companion is

and provides an in-depth guide to writing software in the S language which forms the basis of both the commercial S-Plus and the Open Source R data analysis software systems. See http://www.stats.ox.ac.uk/pub/MASS3/Sprog/ for more information.

In addition to material written specifically or explicitly for R, documentation for S/S-Plus (see ⟨undefined⟩ [R and S], page ⟨undefined⟩) can be used in combination with this FAQ (see ⟨undefined⟩ [What are the differences between R and S?], page ⟨undefined⟩). Introductory books include

The book

provides a comprehensive guide to the use of the nlme package for linear and nonlinear mixed-effects models.

As an example of how R can be used in teaching an advanced introductory statistics course, see

This integrates theory of statistics with the practice of statistics through a collection of case studies (“labs”), and uses R to analyze the data. More information can be found at http://www.stat.Berkeley.EDU/users/statlabs/.

An annotated bibliography (BibTeX format) of R-related publications which includes most of the above references can be found at

http://www.R-project.org/doc/bib/R.bib

2.8 Citing R

To cite R in publications, use
2.9 What mailing lists exist for R?

Thanks to Martin Maechler, there are four mailing lists devoted to R.

R-announce
A moderated list for major announcements about the development of R and the availability of new code.

R-packages
A moderated list for announcements on the availability of new or enhanced contributed packages.

R-help
The ‘main’ R mailing list, for discussion about problems and solutions using R, announcements (not covered by ‘R-announce’ and ‘R-packages’) about the development of R and the availability of new code.

R-devel
This list is for questions and discussion about code development in R.

Please read the http://www.R-project.org/posting-guide.html, posting guide before sending anything to any mailing list.

Note in particular that R-help is intended to be comprehensible to people who want to use R to solve problems but who are not necessarily interested in or knowledgeable about programming. Questions likely to prompt discussion unintelligible to non-programmers (e.g., questions involving C or C++) should go to R-devel.

Convenient access to information on these lists, subscription, and archives is provided by the web interface at http://stat.ethz.ch/mailman/listinfo/. One can also subscribe (or unsubscribe) via email, e.g. to R-help by sending ‘subscribe’ (or ‘unsubscribe’) in the body of the message (not in the subject!) to R-help-request@lists.R-project.org.

Send email to R-help@lists.R-project.org to send a message to everyone on the R-help mailing list. Subscription and posting to the other lists is done analogously, with ‘R-help’ replaced by ‘R-announce’, ‘R-packages’, and ‘R-devel’, respectively. Note that the R-announce and R-packages lists are gatewayed into R-help. Hence, you should subscribe to either of them only in case you are not subscribed to R-help.

It is recommended that you send mail to R-help rather than only to the R Core developers (who are also subscribed to the list, of course). This may save them precious time they can
use for constantly improving R, and will typically also result in much quicker feedback for yourself.

Of course, in the case of bug reports it would be very helpful to have code which reliably reproduces the problem. Also, make sure that you include information on the system and version of R being used. See ⟨undefined⟩ [R Bugs], page ⟨undefined⟩ for more details.

See http://www.R-project.org/mail.html for more information on the R mailing lists.

The R Core Team can be reached at R-core@lists.R-project.org for comments and reports.

Many of the R project’s mailing lists are also available via http://gmane.org, Gmane, from which they can be read with a web browser, using an NNTP news reader, or via RSS feeds. See http://dir.gmane.org/index.php?prefix=gmane.comp.lang.r. for the available mailing lists, and http://www.gmane.org/rss.php for details on RSS feeds.

2.10 What is CRAN?

The “Comprehensive R Archive Network” (CRAN) is a collection of sites which carry identical material, consisting of the R distribution(s), the contributed extensions, documentation for R, and binaries.

The CRAN master site at Wirtschaftsuniversität Wien, Austria, can be found at the URL http://CRAN.R-project.org/

Daily mirrors are available at URLs including

- http://cran.at.R-project.org/ (WU Wien, Austria)
- http://cran.au.R-project.org/ (PlanetMirror, Australia)
- http://cran.br.R-project.org/ (Universidade Federal do Paraná, Brazil)
- http://cran.ch.R-project.org/ (ETH Zürich, Switzerland)
- http://cran.dk.R-project.org/ (SunSITE, Denmark)
- http://cran.es.R-project.org/ (Spanish National Research Network, Madrid, Spain)
- http://cran.fr.R-project.org/ (INRA, Toulouse, France)
- http://cran.pt.R-project.org/ (Universidade do Porto, Portugal)
- http://cran.uk.R-project.org/ (U of Bristol, United Kingdom)
- http://cran.za.R-project.org/ (Rhodes U, South Africa)

See http://CRAN.R-project.org/mirrors.html for a complete list of mirrors. Please use the CRAN site closest to you to reduce network load.

From CRAN, you can obtain the latest official release of R, daily snapshots of R (copies of the current source trees), as gzipped and bzipped tar files, a wealth of additional contributed code, as well as prebuilt binaries for various operating systems (Linux, Mac OS Classic, Mac OS X, and MS Windows). CRAN also provides access to documentation on R, existing mailing lists and the R Bug Tracking system.

To “submit” to CRAN, simply upload to ftp://CRAN.R-project.org/incoming/ and send an email to CRAN@R-project.org. Note that CRAN generally does not accept submissions of precompiled binaries due to security reasons. In particular, binary packages for Windows and Mac OS X are provided by the respective binary package maintainers.
2.11 Can I use R for commercial purposes?

R is released under the [GNU General Public License (GPL)](http://www.gnu.org/copyleft/gpl.html),. If you have any questions regarding the legality of using R in any particular situation you should bring it up with your legal counsel. We are in no position to offer legal advice.

It is the opinion of the R Core Team that one can use R for commercial purposes (e.g., in business or in consulting). The GPL, like all Open Source licenses, permits all and any use of the package. It only restricts distribution of R or of other programs containing code from R. This is made clear in clause 6 (“No Discrimination Against Fields of Endeavor”) of the [Open Source Definition](http://www.opensource.org/docs/definition.html):

> The license must not restrict anyone from making use of the program in a specific field of endeavor. For example, it may not restrict the program from being used in a business, or from being used for genetic research.

It is also explicitly stated in clause 0 of the GPL, which says in part

> Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program.

Most add-on packages, including all recommended ones, also explicitly allow commercial use in this way. A few packages are restricted to “non-commercial use”; you should contact the author to clarify whether these may be used or seek the advice of your legal counsel.

None of the discussion in this section constitutes legal advice. The R Core Team does not provide legal advice under any circumstances.

2.12 Why is R named R?

The name is partly based on the (first) names of the first two R authors (Robert Gentleman and Ross Ihaka), and partly a play on the name of the Bell Labs language ‘S’ (see [What is S?], page (undefined)).

2.13 What is the R Foundation?

The R Foundation is a not for profit organization working in the public interest. It was founded by the members of the R Core Team in order to provide support for the R project and other innovations in statistical computing, provide a reference point for individuals, institutions or commercial enterprises that want to support or interact with the R development community, and to hold and administer the copyright of R software and documentation. See http://www.R-project.org/foundation/ for more information.
3 R and S

3.1 What is S?

S is a very high level language and an environment for data analysis and graphics. In 1998, the Association for Computing Machinery (ACM) presented its Software System Award to John M. Chambers, the principal designer of S, for the S system, which has forever altered the way people analyze, visualize, and manipulate data . . .

S is an elegant, widely accepted, and enduring software system, with conceptual integrity, thanks to the insight, taste, and effort of John Chambers.

The evolution of the S language is characterized by four books by John Chambers and coauthors, which are also the primary references for S.

 This is also referred to as the “Brown Book”, and of historical interest only.
 This book is often called the “Blue Book”, and introduced what is now known as S version 2.
 This is also called the “White Book”, and introduced S version 3, which added structures to facilitate statistical modeling in S.
 This “Green Book” describes version 4 of S, a major revision of S designed by John Chambers to improve its usefulness at every stage of the programming process.

See http://cm.bell-labs.com/cm/ms/departments/sia/S/history.html for further information on “Stages in the Evolution of S”.

There is a huge amount of user-contributed code for S, available at the http://lib.stat.cmu.edu/S/, S Repository at CMU.

3.2 What is S-PLUS?

S-PLUS is a value-added version of S sold by Insightful Corporation. Based on the S language, S-PLUS provides functionality in a wide variety of areas, including robust regression, modern non-parametric regression, time series, survival analysis, multivariate analysis, classical statistical tests, quality control, and graphics drivers. Add-on modules add additional capabilities.

3.3 What are the differences between R and S?

We can regard S as a language with three current implementations or “engines”, the “old S engine” (S version 3; S-PLUS 3.x and 4.x), the “new S engine” (S version 4; S-PLUS 5.x and above), and R. Given this understanding, asking for “the differences between R and S” really amounts to asking for the specifics of the R implementation of the S language, i.e., the difference between the R and S engines.

For the remainder of this section, “S” refers to the S engines and not the S language.

3.3.1 Lexical scoping

Contrary to other implementations of the S language, R has adopted an evaluation model in which nested function definitions are lexically scoped. This is analogous to the evaluation model in Scheme.

This difference becomes manifest when free variables occur in a function. Free variables are those which are neither formal parameters (occurring in the argument list of the function) nor local variables (created by assigning to them in the body of the function). In S, the values of free variables are determined by a set of global variables (similar to C, there is only local and global scope). In R, they are determined by the environment in which the function was created.

Consider the following function:

```r
cube <- function(n) {
  sq <- function() n * n
  n * sq()
}
```

Under S, `sq()` does not “know” about the variable `n` unless it is defined globally:

```r
S> cube(2)
Error in sq(): Object "n" not found
Dumped
S> n <- 3
S> cube(2)
[1] 18
```

In R, the “environment” created when `cube()` was invoked is also looked in:

```r
R> cube(2)
[1] 8
```

As a more “interesting” real-world problem, suppose you want to write a function which returns the density function of the r-th order statistic from a sample of size n from a (continuous) distribution. For simplicity, we shall use both the cdf and pdf of the distribution as explicit arguments. (Example compiled from various postings by Luke Tierney.)

The S-PLUS documentation for `call()` basically suggests the following:

dorder <- function(n, r, pfun, dfun) {
 f <- function(x) NULL
 con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
 PF <- call(substitute(pfun), as.name("x"))
 DF <- call(substitute(dfun), as.name("x"))
 f[[length(f)]] <-
 call("*", con,
 call("*", call("^", PF, r - 1),
 call("^", call("-", 1, PF), n - r),
 DF))
 f
}

Rather tricky, isn't it? The code uses the fact that in S, functions are just lists of special
mode with the function body as the last argument, and hence does not work in R (one
could make the idea work, though).

A version which makes heavy use of substitute() and seems to work under both S and
R is

dorder <- function(n, r, pfun, dfun) {
 con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
 eval(substitute(function(x) K * PF(x)^a * (1 - PF(x))^b * DF(x),
 list(PF = substitute(pfun), DF = substitute(dfun),
 a = r - 1, b = n - r, K = con)))
}

(the eval() is not needed in S).

However, in R there is a much easier solution:

dorder <- function(n, r, pfun, dfun) {
 con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
 function(x) {
 con * pfun(x)^(r - 1) * (1 - pfun(x))^(n - r) * dfun(x)
 }
}

This seems to be the “natural” implementation, and it works because the free variables in
the returned function can be looked up in the defining environment (this is lexical scope).

Note that what you really need is the function closure, i.e., the body along with all
variable bindings needed for evaluating it. Since in the above version, the free variables in
the value function are not modified, you can actually use it in S as well if you abstract out
the closure operation into a function MC() (for “make closure”):

dorder <- function(n, r, pfun, dfun) {
 con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
 MC(function(x) {
 con * pfun(x)^(r - 1) * (1 - pfun(x))^(n - r) * dfun(x)
 },
 list(con = con, pfun = pfun, dfun = dfun, r = r, n = n))
}
Given the appropriate definitions of the closure operator, this works in both R and S, and is much “cleaner” than a substitute/eval solution (or one which overrules the default scoping rules by using explicit access to evaluation frames, as is of course possible in both R and S).

For R, \texttt{MC()} simply is

\begin{verbatim}
MC <- function(f, env) f
\end{verbatim}

(lexical scope!), a version for S is

\begin{verbatim}
MC <- function(f, env = NULL) {
 env <- as.list(env)
 if (mode(f) != "function")
 stop(paste("not a function:", f))
 if (length(env) > 0 && any(names(env) == ""))
 stop(paste("not all arguments are named:", env))
 fargs <- if (length(f) > 1) f[1:(length(f) - 1)] else NULL
 fargs <- c(fargs, env)
 if (any(duplicated(names(fargs))))
 stop(paste("duplicated arguments:", paste(names(fargs)),
 collapse = ", "))
 fbody <- f[length(f)]
 cf <- c(fargs, fbody)
 mode(cf) <- "function"
 return(cf)
}
\end{verbatim}

Similarly, most optimization (or zero-finding) routines need some arguments to be optimized over and have other parameters that depend on the data but are fixed with respect to optimization. With R scoping rules, this is a trivial problem; simply make up the function with the required definitions in the same environment and scoping takes care of it. With S, one solution is to add an extra parameter to the function and to the optimizer to pass in these extras, which however can only work if the optimizer supports this.

Nested lexically scoped functions also imply a further major difference. Whereas S stores all objects as separate files in a directory somewhere (usually \texttt{.Data} under the current directory), R does not. All objects in R are stored internally. When R is started up it grabs a piece of memory and uses it to store the objects. R performs its own memory management of this piece of memory, growing and shrinking its size as needed. Having everything in memory is necessary because it is not really possible to externally maintain all relevant “environments” of symbol/value pairs. This difference also seems to make R \textit{faster} than S.
Chapter 3: R and S

The downside is that if R crashes you will lose all the work for the current session. Saving and restoring the memory “images” (the functions and data stored in R’s internal memory at any time) can be a bit slow, especially if they are big. In S this does not happen, because everything is saved in disk files and if you crash nothing is likely to happen to them. (In fact, one might conjecture that the S developers felt that the price of changing their approach to persistent storage just to accommodate lexical scope was far too expensive.) Hence, when doing important work, you might consider saving often (see How can I save my workspace?, page (undefined)) to safeguard against possible crashes. Other possibilities are logging your sessions, or have your R commands stored in text files which can be read in using source().

Note If you run R from within Emacs (see (undefined) [R and Emacs], page (undefined)), you can save the contents of the interaction buffer to a file and conveniently manipulate it using ess-transcript-mode, as well as save source copies of all functions and data used.

3.3.2 Models

There are some differences in the modeling code, such as

- Whereas in S, you would use \(\text{lm}(y \sim x^3) \) to regress \(y \) on \(x^3 \), in R, you have to insulate powers of numeric vectors (using I()), i.e., you have to use \(\text{lm}(y \sim \text{I}(x^3)) \).
- The glm family objects are implemented differently in R and S. The same functionality is available but the components have different names.
- Option na.action is set to "na.omit" by default in R, but not set in S.
- Terms objects are stored differently. In S a terms object is an expression with attributes, in R it is a formula with attributes. The attributes have the same names but are mostly stored differently.
- Finally, in R \(y \sim x + 0 \) is an alternative to \(y \sim x - 1 \) for specifying a model with no intercept. Models with no parameters at all can be specified by \(y \sim 0 \).

3.3.3 Others

Apart from lexical scoping and its implications, R follows the S language definition in the Blue and White Books as much as possible, and hence really is an “implementation” of S. There are some intentional differences where the behavior of S is considered “not clean”. In general, the rationale is that R should help you detect programming errors, while at the same time being as compatible as possible with S.

Some known differences are the following.

- In R, if \(x \) is a list, then \(x[i] <- \text{NULL} \) and \(\text{x}[i] <- \text{NULL} \) remove the specified elements from \(x \). The first of these is incompatible with S, where it is a no-op. (Note that you can set elements to \text{NULL} using \(x[i] <- \text{list(NULL)}. \))
- In S, the functions named .First and .Last in the ‘.Data’ directory can be used for customizing, as they are executed at the very beginning and end of a session, respectively.

In R, the startup mechanism is as follows. R first sources the system startup file ‘\$R_HOME/library/base/R/Rprofile’. Then, it searches for a site-wide startup profile
unless the command line option ‘--no-site-file’ was given. The name of this file is taken from the value of the \texttt{R_PROFILE} environment variable. If that variable is unset, the default is ‘$\texttt{R_HOME/etc/Rprofile.site}’. This code is loaded in package \texttt{base}. Then, unless ‘--no-init-file’ was given, R searches for a file called ‘.Rprofile’ in the current directory or in the user’s home directory (in that order) and sources it into the user workspace. It then loads a saved image of the user workspace from ‘.RData’ in case there is one (unless ‘--no-restore’ was specified). If needed, the functions \texttt{.First()} and \texttt{.Last()} should be defined in the appropriate startup profiles.

- In R, T and F are just variables being set to \texttt{TRUE} and \texttt{FALSE}, respectively, but are not reserved words as in S and hence can be overwritten by the user. (This helps e.g. when you have factors with levels "T" or "F".) Hence, when writing code you should always use \texttt{TRUE} and \texttt{FALSE}.

- In R, \texttt{dyn.load()} can only load \textit{shared objects}, as created for example by \texttt{R CMD SHLIB}.

- In R, \texttt{attach()} currently only works for lists and data frames, but not for directories. (In fact, \texttt{attach()} also works for R data files created with \texttt{save()}, which is analogous to attaching directories in S.) Also, you cannot attach at position 1.

- Categories do not exist in R, and never will as they are deprecated now in S. Use factors instead.

- In R, \texttt{For()} loops are not necessary and hence not supported.

- In R, \texttt{assign()} uses the argument ‘\texttt{envir=’} rather than ‘\texttt{where=’} as in S.

- The random number generators are different, and the seeds have different length.

- R passes integer objects to C as \texttt{int *} rather than \texttt{long *} as in S.

- R has no single precision storage mode. However, as of version 0.65.1, there is a single precision interface to C/FORTRAN subroutines.

- By default, \texttt{ls()} returns the names of the objects in the current (under R) and global (under S) environment, respectively. For example, given

 \begin{verbatim}
 x <- 1; fun <- function() {y <- 1; ls()}
 \end{verbatim}

 then \texttt{fun()} returns "y" in R and "x" (together with the rest of the global environment) in S.

- R allows for zero-extent matrices (and arrays, i.e., some elements of the \texttt{dim} attribute vector can be 0). This has been determined a useful feature as it helps reducing the need for special-case tests for empty subsets. For example, if \(x \) is a matrix, \(x[, \text{FALSE}] \) is not \texttt{NULL} but a “matrix” with 0 columns. Hence, such objects need to be tested for by checking whether their \texttt{length()} is zero (which works in both R and S), and not using \texttt{is.null()}.

- Named vectors are considered vectors in R but not in S (e.g., \texttt{is.vector(c(a = 1:3))} returns \texttt{FALSE} in S and \texttt{TRUE} in R).

- Data frames are not considered as matrices in R (i.e., if \texttt{DF} is a data frame, then \texttt{is.matrix(DF)} returns \texttt{FALSE} in R and \texttt{TRUE} in S).

- R by default uses treatment contrasts in the unordered case, whereas S uses the Helmert ones. This is a deliberate difference reflecting the opinion that treatment contrasts are more natural.
• In R, the argument of a replacement function which corresponds to the right hand side must be named ‘value’. E.g., \(f(a) <- b \) is evaluated as \(a <- "f<-"(a, value = b) \). S always takes the last argument, irrespective of its name.

• In S, \texttt{substitute()} searches for names for substitution in the given expression in three places: the actual and the default arguments of the matching call, and the local frame (in that order). R looks in the local frame only, with the special rule to use a “promise” if a variable is not evaluated. Since the local frame is initialized with the actual arguments or the default expressions, this is usually equivalent to S, until assignment takes place.

• In S, the index variable in a \texttt{for()} loop is local to the inside of the loop. In R it is local to the environment where the \texttt{for()} statement is executed.

• In S, \texttt{tapply(simplify=TRUE)} returns a vector where R returns a one-dimensional array (which can have named dimnames).

• In S(-Plus) the C locale is used, whereas in R the current operating system locale is used for determining which characters are alphanumeric and how they are sorted. This affects the set of valid names for R objects (for example accented chars may be allowed in R) and ordering in sorts and comparisons (such as whether "aA" < "Bb" is true or false). From version 1.2.0 the locale can be (re-)set in R by the \texttt{Sys.setlocale()} function.

• In S, \texttt{missing(arg)} remains \texttt{TRUE} if \(arg \) is subsequently modified; in R it doesn’t.

• From R version 1.3.0, \texttt{data.frame} strips \texttt{I()} when creating (column) names.

• In R, the string "NA" is not treated as a missing value in a character variable. Use \texttt{as.character(NA)} to create a missing character value.

• R disallows repeated formal arguments in function calls.

• In S, \texttt{dump()}, \texttt{dput()} and \texttt{deparse()} are essentially different interfaces to the same code. In R from version 2.0.0, this is only true if the same \texttt{control} argument is used, but by default it is not. By default \texttt{dump()} tries to write code that will evaluate to reproduce the object, whereas \texttt{dput()} and \texttt{deparse()} default to options for producing deparsed code that is readable.

• In R, indexing a vector, matrix, array or data frame with [using a character vector index looks only for exact matches (whereas [[and $ allow partial matches). In S, [allows partial matches.

• S has a two-argument version of \texttt{atan} and no \texttt{atan2}. A call in S such as \texttt{atan(x1, x2)} is equivalent to R’s \texttt{atan2(x1, x2)}. However, beware of named arguments since S’s \texttt{atan(x = a, y = b)} is equivalent to R’s \texttt{atan2(y = a, x = b)} with the meanings of \(x \) and \(y \) interchanged. (R used to have undocumented support for a two-argument \texttt{atan} with positional arguments, but this has been withdrawn to avoid further confusion.)

• Numeric constants with no fractional and exponent (i.e., only integer) part are taken as integer in S-Plus 6.x or later, but as double in R.

There are also differences which are not intentional, and result from missing or incorrect code in R. The developers would appreciate hearing about any deficiencies you may find (in a written report fully documenting the difference as you see it). Of course, it would be useful if you were to implement the change yourself and make sure it works.
3.4 Is there anything R can do that S-PLUS cannot?

Since almost anything you can do in R has source code that you could port to S-PLUS with little effort there will never be much you can do in R that you couldn’t do in S-PLUS if you wanted to. (Note that using lexical scoping may simplify matters considerably, though.)

R offers several graphics features that S-PLUS does not, such as finer handling of line types, more convenient color handling (via palettes), gamma correction for color, and, most importantly, mathematical annotation in plot texts, via input expressions reminiscent of TeX constructs. See the help page for `plotmath`, which features an impressive on-line example. More details can be found in Paul Murrell and Ross Ihaka (2000), “An Approach to Providing Mathematical Annotation in Plots”, http://www.amstat.org/publications/jcgs/, Journal of Computational and Graphical Statistics, 9, 582–599.

3.5 What is R-plus?

For a very long time, there was no such thing.

http://www.xlsolutions-corp.com/, XLSolutions Corporation is currently beta testing a commercially supported version of R named R+ (read R plus).

4 R Web Interfaces

Rweb is developed and maintained by Jeff Banfield. The http://www.math.montana.edu/Rweb/, Rweb Home Page provides access to all three versions of Rweb—a simple text entry form that returns output and graphs, a more sophisticated Javascript version that provides a multiple window environment, and a set of point and click modules that are useful for introductory statistics courses and require no knowledge of the R language. All of the Rweb versions can analyze Web accessible datasets if a URL is provided.

The paper “Rweb: Web-based Statistical Analysis”, providing a detailed explanation of the different versions of Rweb and an overview of how Rweb works, was published in the Journal of Statistical Software (http://www.jstatsoft.org/v04/i01/).

Ulf Bartel has developed R-Online, a simple on-line programming environment for R which intends to make the first steps in statistical programming with R (especially with time series) as easy as possible. There is no need for a local installation since the only requirement for the user is a JavaScript capable browser. See http://osvisions.com/r-online/ for more information.

Rcgi is a CGI WWW interface to R by MJ Ray. It had the ability to use “embedded code”: you could mix user input and code, allowing the HTML author to do anything from load in data sets to enter most of the commands for users without writing CGI scripts. Graphical output was possible in PostScript or GIF formats and the executed code was presented to the user for revision. However, it is not clear if the project is still active. Currently, a modified version of Rcgi by Mai Zhou (actually, two versions: one with (bitmap) graphics and one without) as well as the original code are available from http://www.ms.uky.edu/~statweb/.

CGI-based web access to R is also provided at http://hermes.sdu.dk/cgi-bin/go/. There are many additional examples of web interfaces to R which basically allow to submit R code to a remote server, see for example the collection of links available from http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/StatCompCourse.

http://www.warwick.ac.uk/go/dfirth, David Firth has written CGIwithR, an R add-on package available from CRAN. It provides some simple extensions to R to facilitate running R scripts through the CGI interface to a web server, and allows submission of data using both GET and POST methods. It is easily installed using Apache under Linux and in principle should run on any platform that supports R and a web server provided that the installer has the necessary security permissions. David’s paper “CGIwithR: Facilities for Processing Web Forms Using R” was published in the Journal of Statistical Software (http://www.jstatsoft.org/v08/i10/). The package is now maintained by Duncan Temple Lang and has a web page at http://www.omegahat.org/CGIwithR/.

http://www.rpad.org/Rpad, Rpad, developed and actively maintained by Tom Short, provides a sophisticated environment which combines some of the features of the previous approaches with quite a bit of Javascript, allowing for a gui-like behavior (with sortable tables, clickable graphics, editable output), etc.

Jeff Horner is working on the R/Apache Integration Project which embeds the R interpreter inside Apache 2 (and beyond). A tutorial and presentation are available from the project web page at http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/RApacheProject.
http://stats.math.uni-augsburg.de/Rserve/, Rserve is a project actively developed by Simon Urbanek. It implements a TCP/IP server which allows other programs to use facilities of R. Clients are available from the web site for Java and C++ (and could be written for other languages that support TCP/IP sockets).

http://openstatserver.org/index.html, OpenStatServer is being developed by a team lead by Greg Warnes; it aims “to provide clean access to computational modules defined in a variety of computational environments (R, SAS, Matlab, etc) via a single well-defined client interface” and to turn computational services into web services.

Two projects use PHP to provide a web interface to R. http://steve-chen.net/R_PHP/, R_PHP_Online by Steve Chen (though it is unclear if this project is still active) is somewhat similar to the above Rcgi and Rweb. http://dssm.unipa.it/R-php/?cmd=home, R-php is actively developed by Alfredo Pontillo and Angelo Mineo and provides both a web interface to R and a set of pre-specified analyses that need no R code input.

http://www.bioconductor.org/, webbioc is “an integrated web interface for doing microarray analysis using several of the Bioconductor packages” and is designed to be installed at local sites as a shared computing resource.

Finally, http://rwui.cryst.bbk.ac.uk, Rwui is a web application to to create user-friendly web interfaces for R scripts. All code for the web interface is created automatically. There is no need for the user to do any extra scripting or learn any new scripting techniques.
5 R Add-On Packages

5.1 Which add-on packages exist for R?

5.1.1 Add-on packages in R

The R distribution comes with the following packages:

- **base**: Base R functions (and datasets before R 2.0.0).
- **datasets**: Base R datasets (added in R 2.0.0).
- **grDevices**: Graphics devices for base and grid graphics (added in R 2.0.0).
- **graphics**: R functions for base graphics.
- **grid**: A rewrite of the graphics layout capabilities, plus some support for interaction.
- **methods**: Formally defined methods and classes for R objects, plus other programming tools, as described in the Green Book.
- **splines**: Regression spline functions and classes.
- **stats**: R statistical functions.
- **stats4**: Statistical functions using S4 classes.
- **tcltk**: Interface and language bindings to Tcl/Tk GUI elements.
- **tools**: Tools for package development and administration.
- **utils**: R utility functions.

These “base packages” were substantially reorganized in R 1.9.0. The former base was split into the four packages base, graphics, stats, and utils. Packages ctest, eda, modreg, mva, nls, stepfun and ts were merged into stats, package lqs returned to the recommended package MASS, and package mle moved to stats4.

5.1.2 Add-on packages from CRAN

The following packages are available from the CRAN ‘src/contrib’ area. (Packages denoted as Recommended are to be included in all binary distributions of R.)

- **ADaCGH**: Analysis of data from aCGH experiments.
- **AIS**: Tools to look at the data (“Ad Inidicia Spectata”).
- **AMORE**: A MORE flexible neural network package, providing the TAO robust neural network algorithm.
- **ARES**: Allelic richness estimation, with extrapolation beyond the sample size.
- **AcceptanceSampling**: Creation and evaluation of acceptance sampling plans,
<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdaptFit</td>
<td>Adaptive semiparametric regression.</td>
</tr>
<tr>
<td>AlgDesign</td>
<td>Algorithmic experimental designs. Calculates exact and approximate theory</td>
</tr>
<tr>
<td></td>
<td>experimental designs for D, A, and I criteria.</td>
</tr>
<tr>
<td>Amelia</td>
<td>Amelia II: a program for missing data.</td>
</tr>
<tr>
<td>AnalyzeFMRI</td>
<td>Functions for I/O, visualisation and analysis of functional Magnetic Resonance</td>
</tr>
<tr>
<td></td>
<td>Imaging (fMRI) datasets stored in the ANALYZE format.</td>
</tr>
<tr>
<td>ArDec</td>
<td>Time series autoregressive decomposition.</td>
</tr>
<tr>
<td>BACCO</td>
<td>Bayesian Analysis of Computer Code Output. Contains approximator, calibrator,</td>
</tr>
<tr>
<td></td>
<td>and emulator, for Bayesian prediction of complex computer codes, calibration</td>
</tr>
<tr>
<td></td>
<td>of computer models, and emulation of computer programs, respectively.</td>
</tr>
<tr>
<td>BARD</td>
<td>Better Automated ReDistricting.</td>
</tr>
<tr>
<td>BAYSTAR</td>
<td>Bayesian analysis of threshold autoregressive models.</td>
</tr>
<tr>
<td>BHH2</td>
<td>Functions and data sets reproducing some examples in “Statistics for Experi-</td>
</tr>
<tr>
<td></td>
<td>menters II” by G. E. P. Box, J. S. Hunter, and W. C. Hunter, 2005, John Wiley</td>
</tr>
<tr>
<td></td>
<td>and Sons.</td>
</tr>
<tr>
<td>BMA</td>
<td>Bayesian Model Averaging for linear models, generalizable linear models and</td>
</tr>
<tr>
<td></td>
<td>survival models (Cox regression).</td>
</tr>
<tr>
<td>BPHO</td>
<td>Bayesian Prediction with High-order Interactions.</td>
</tr>
<tr>
<td>BRugs</td>
<td>OpenBUGS and its R interface BRugs.</td>
</tr>
<tr>
<td>BayHaz</td>
<td>Functions for Bayesian Hazard rate estimation.</td>
</tr>
<tr>
<td>BayesTree</td>
<td>Bayesian methods for tree based models.</td>
</tr>
<tr>
<td>BayesValidate</td>
<td>Bayesian software validation using posterior quantiles.</td>
</tr>
<tr>
<td>Bchron</td>
<td>Create chronologies based on radiocarbon and non-radiocarbon dated depths.</td>
</tr>
<tr>
<td>Bhat</td>
<td>Functions for general likelihood exploration (MLE, MCMC, CIs).</td>
</tr>
<tr>
<td>BiasedUrn</td>
<td>Biased urn model distributions.</td>
</tr>
<tr>
<td>BioIDMapper</td>
<td>Mapping between BioIDs.</td>
</tr>
<tr>
<td>Biodem</td>
<td>A number of functions for biodemographic analysis.</td>
</tr>
<tr>
<td>BiodiversityR</td>
<td>GUI for biodiversity and community ecology analysis.</td>
</tr>
<tr>
<td>Bolstad</td>
<td>Functions and data sets for the book “Introduction to Bayesian Statistics”</td>
</tr>
<tr>
<td></td>
<td>by W. M. Bolstad, 2004, John Wiley and Sons.</td>
</tr>
<tr>
<td>BootCL</td>
<td>Bootstrapping test for chromosomal localization.</td>
</tr>
</tbody>
</table>
BradleyTerry
Specify and fit the Bradley-Terry model and structured versions.

Brobdingnag
Very large numbers in R.

BSDA

BsMD
Bayes screening and model discrimination follow-up designs.

CCA
Canonical correlation analysis.

CDNmoney
Components of Canadian monetary aggregates.

CGIwithR
Facilities for the use of R to write CGI scripts.

CORREP
Multivariate correlation estimation.

COZIGAM
Constrained Zero-Inflated Generalized Additive Model.

CPE
Concordance probability estimates in survival analysis.

CTFS
The CTFS large plot forest dynamics analyses.

CVThresh
Level-dependent Cross-Validation Thresholding.

Cairo
Graphics device using cairographics library for creating high-quality PNG, PDF, SVG, PostScript output and interactive display devices such as X11.

CarbonEL
Carbon Event Loop.

CellularAutomaton
One-dimensional cellular automata.

ChainLadder
Mack- and Munich-chain-ladder methods for insurance claims reserving.

CircStats

CoCo
Graphical modeling for contingency tables using CoCo.

ComPairWise
Compare phylogenetic or population genetic data alignments.

CombMSC
Combined Model Selection Criteria.

CompetingRiskFrailty
Competing risk model with frailties for right censored survival data.

Containers
Object-oriented data structures including stack, queue, and binary search tree.

CoxBoost
Cox survival models by likelihood based boosting.
CreditMetrics
Functions for calculating the CreditMetrics risk model.

DAAG

DAAGbio
Data sets and functions, for demonstrations with expression arrays.

DAAGxtras
Data sets and functions additional to DAAG.

DBI
A common database interface (DBI) class and method definitions. All classes in this package are virtual and need to be extended by the various DBMS implementations.

DCluster
A set of functions for the detection of spatial clusters of diseases using count data.

DDHFm
Variance stabilization by Data-Driven Haar-Fisz (for microarrays).

DEA
Data Envelopment Analysis.

DEoptim
Differential Evolution Optimization.

DICOM
Import and manipulate medical imaging data using the Digital Imaging and Communications in Medicine (DICOM) Standard.

DPpackage
Semiparametric Bayesian analysis using Dirichlet process priors.

Davies
Functions for the Davies quantile function and the Generalized Lambda distribution.

Defaults
Create global function defaults.

DescribeDisplay
R interface to the DescribeDisplay GGobi plugin.

Design
Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. Design is a collection of about 180 functions that assist and streamline modeling, especially for biostatistical and epidemiologic applications. It also contains new functions for binary and ordinal logistic regression models and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. Design works with almost any regression model, but it was especially written to work with logistic regression, Cox regression, accelerated failure time models, ordinary linear models, and the Buckley-James model.

Devore5

Devore6

Devore7
DierckxSpline

R companion to “Curve and Surface Fitting with Splines” by Paul Dierckx, 1993, Oxford University Press.

EDR

Estimation of the effective dimension reduction (EDR) space.

EMC

Evolutionary Monte Carlo (EMC) algorithm.

EMCC

Evolutionary Monte Carlo (EMC) methods for clustering.

EMD

Empirical mode decomposition and Hilbert spectral analysis.

EMV

Estimation of missing values in a matrix by a k-th nearest neighbors algorithm.

ETC

Tests and simultaneous confidence intervals for equivalence to control.

EbayesThresh

Empirical Bayes thresholding and related methods.

Ecdat

Data sets from econometrics textbooks.

EffectiveDose

Estimate the effective dose level for quantal bioassay data by nonparametric techniques.

ElemStatLearn

Data sets, functions and examples from the book “The Elements of Statistical Learning: Data Mining, Inference, and Prediction” by Trevor Hastie, Robert Tibshirani and Jerome Friedman (2001), Springer.

Epi

Statistical analysis in epidemiology, with functions for demographic and epidemiological analysis in the Lexis diagram.

FAiR

Factor Analysis in R, using genetic algorithms.

FGN

Fractional Gaussian Noise model fitting.

FKBL

Fuzzy Knowledge Base Learning.

FactoMineR

Factor analysis and data mining with R.

Fahrmeir

Data from the book “Multivariate Statistical Modelling Based on Generalized Linear Models” by Ludwig Fahrmeir and Gerhard Tutz (1994), Springer.

FieldSim

Random fields simulations.

FinTS

FitAR

Subset AR model fitting.

Flury

Data sets from from “A First Course in Multivariate Statistics” by Bernard Flury (1997), Springer.

FrF2

Analysis of fractional factorial designs with 2-level factors.

FracSim

Simulation of one- and two-dimensional fractional and multifractional Levy motions.
FunCluster
Functional profiling of cDNA microarray expression data.

FunNet
Functional analysis of gene co-expression networks.

G1DBN
Dynamic Bayesian Network inference using 1st order conditional dependencies.

GAMBoost
Generalized additive models by likelihood based boosting.

GDD
Platform and X11 independent device for creating bitmaps (png, gif and jpeg) using the GD graphics library.

GEOmap
Topographic and geologic mapping.

GLDEX
Fit RS and FMKL generalised lambda distributions using discretized and maximum likelihood methods.

GOsim
Computation of functional similarities between GO terms and gene products.

GPAratation
Gradient Projection Algorithm rotation for factor analysis.

GRASS
An interface between the GRASS geographical information system and R, based on starting R from within the GRASS environment and chosen LOCATION.NAME and MAPSET. Wrapper and helper functions are provided for a range of R functions to match the interface metadata structures.

GSA
Gene set analysis.

GSM
Gamma Shape Mixture.

GenABEL
Genome-wide SNP association analysis.

GenKern
Functions for generating and manipulating generalised binned kernel density estimates.

GeneCycle
Identification of periodically expressed genes.

GeneF
Generalized F-statistics.

GeneNT
Relevance or Dependency network and signaling pathway discovery.

GeneNet
Modeling and inferring gene networks.

GeneTS
A package for analysing multiple gene expression time series data. Currently, implements methods for cell cycle analysis and for inferring large sparse graphical Gaussian models.

Geneland
MCMC inference from individual genetic data based on a spatial statistical model.

GeoXp
Interactive exploratory spatial data analysis.

GillespieSSA
Gillespie’s Stochastic Simulation Algorithm (SSA).

GroupSeq
Computations related to group-seqential boundaries.
HH Support software for “Statistical Analysis and Data Display” by Richard M.

HII Simulation from distributions supported by nested hyperplanes.

HSAUR Functions, data sets, analyses and examples from the book “A
Handbook of Statistical Analyses Using R” by Brian S. Everitt and Torsten
Hothorn (2006), Chapman & Hall/CRC.

HTMLapplets Functions inserting dynamic scatterplots and grids in
documents generated by R2HTML.

HFWutils Utilities by H. Felix Wittmann: Excel connections, string matching,
and passing by reference.

HardyWeinberg Graphical tests for Hardy-Weinberg equilibrium.

HiddenMarkov Hidden Markov Models.

HighProbability Estimation of the alternative hypotheses having frequentist or Bayesian
probabilities at least as great as a specified threshold, given a list of p-values.

Hmisc Functions useful for data analysis, high-level graphics, utility operations,
functions for computing sample size and power, importing datasets, imputing missing
values, advanced table making, variable clustering, character string manipula-
tion, conversion of S objects to code, recoding variables, and bootstrap
repeated measures analysis.

HydroMe Estimation of soil hydraulic parameters from experimental data.

HyperbolicDist Basic functions for the hyperbolic distribution: probability density function,
distribution function, quantile function, a routine for generating observations
from the hyperbolic, and a function for fitting the hyperbolic distribution to
data.

IBrokers R API to Interactive Brokers Trader Workstation.

ICE Iterated Conditional Expectation: kernel estimators for interval-censored data.

ICEinfer Incremental Cost-Effectiveness (ICE) statistical inference (from two unbiased
samples).

ICS ICS/ICA computation based on two scatter matrices.

ICSNP Tools for multivariate nonparametrics.

IDPmisc Utilities from the Institute of Data Analyses and Process
Design, IDP/ZHW.

ISA Functions to support “Introduzione alla Statistica Applicata con esempi in R”

ISwR Data sets for “Introductory Statistics with R” by Peter Dalgaard, 2002,
Springer.
Icens Functions for computing the NPMLE for censored and truncated data.

Iso Functions to perform isotonic regression.

JADE JADE and ICA performance criteria.

JLLprod Nonparametric estimation of homothetic and generalized homothetic production functions.

JGR Java Gui for R.

JM Joint Modeling of longitudinal and survival data.

JavaGD Java Graphics Device.

JointGLM Joint modeling of mean and dispersion through two interlinked GLM’s. *Defunct* in favor of **JointModeling**.

JointModeling Joint modeling of mean and dispersion.

JudgeIt Calculates bias, responsiveness, and other characteristics of two-party electoral systems, with district-level electoral and other data.

KMsurv Data sets and functions for “Survival Analysis, Techniques for Censored and Truncated Data” by Klein and Moeschberger, 1997, Springer.

Kendall Kendall rank correlation and Mann-Kendall trend test.

LDheatmap Heat maps of linkage disequilibrium measures.

LLAhclust Hierarchical clustering of variables or objects based on the likelihood linkage analysis method.

LLN Learning with latent networks.

LMGene Date transformation and identification of differentially expressed genes in gene expression arrays.

LearnBayes Functions for Learning Bayesian Inference.

Lmoments Estimation of L-moments and the parameters of normal and Cauchy polynomial quantile mixtures.

LogConcDEAD Maximum likelihood estimation of a log-concave density.

LogicReg Routines for Logic Regression.

LoopAnalyst A collection of tools to conduct Levins’ Loop Analysis.
LowRankQP
Low Rank Quadratic Programming: QP problems where the hessian is represented as the product of two matrices.

MASS

MBA
Multilevel B-spline Approximation.

MBESS
Methods for the Behavioral, Educational, and Social Sciences.

MCMCpack
Markov chain Monte Carlo (MCMC) package: functions for posterior simulation for a number of statistical models.

MCPAN
Multiple comparisons using normal approximation.

MCPMod
Design and analysis of dose-finding studies.

MChtest
Monte Carlo hypothesis tests.

MEMSS

MFDA
Model Based Functional Data Analysis.

MKLE
Maximum kernel likelihood estimation.

MLDS
Maximum Likelihood Difference Scaling.

MLEcens
Computation of the MLE for bivariate (interval) censored data.

MNP
Fitting Bayesian Multinomial Probit models via Markov chain Monte Carlo. Along with the standard Multinomial Probit model, it can also fit models with different choice sets for each observation and complete or partial ordering of all the available alternatives.

MPV

MSBVAR
Bayesian vector autoregression models, impulse responses and forecasting.

MarkedPointProcess
Non-parametric analysis of the marks of marked point processes.

MasterBayes
Maximum likelihood and Markov chain Monte Carlo methods for pedigree reconstruction, analysis and simulation.

MatchIt
Select matched samples of the original treated and control groups with similar covariate distributions.

Matching
Multivariate and propensity score matching with formal tests of balance.

Matrix
A Matrix package.

MiscPsycho
Miscellaneous Psychometrics.
MultEq Equivalence tests and simultaneous confidence intervals for multiple endpoints.
NADA Methods described in “Nondetects And Data Analysis: Statistics for Censored Environmental Data” by Dennis R. Helsel, 2004, John Wiley and Sons.
NISTnls A set of test nonlinear least squares examples from NIST, the U.S. National Institute for Standards and Technology.
NMMAPSlite U.S. National Morbidity, Mortality, and Air Pollution Study data lite.
NORMT3 Evaluates complex erf, erfc and density of sum of Gaussian and Student’s t.
NRAIA Data sets with sample code from “Nonlinear Regression Analysis and Its Applications” by Doug Bates and Donald Watts, 1988, Wiley.
NestedCohort Survival analysis for cohorts with missing covariate information.
Oarray Arrays with arbitrary offsets.
PBSmapping Software evolved from fisheries research conducted at the Pacific Biological Station (PBS) in Nanaimo, British Columbia, Canada. Draws maps and implements other GIS procedures.
PBSmodelling Software to facilitate the design, testing, and operation of computer models.
PET Simulation and reconstruction of PET images.
PHYLOGR Manipulation and analysis of phylogenetically simulated data sets (as obtained from PDSIMUL in package PDAP) and phylogenetically-based analyses using GLS.
PK Estimation of pharmacokinetic parameters.
PKfit A nonlinear regression (including a genetic algorithm) program designed to deal with curve fitting for pharmacokinetics.
Unified computational interfaces for pop PK.
POT Generalized Pareto distribution and Peaks Over Threshold.
PSAgraphics Propensity Score Analysis Graphics.
PTAk A multiway method to decompose a tensor (array) of any order, as a generalisation of SVD also supporting non-identity metrics and penalisations. Also includes some other multiway methods.
Peaks Spectrum manipulation: background estimation, Markov smoothing, deconvolution and peaks search functions.

PearsonICA Independent component analysis using score functions from the Pearson system.

PerformanceAnalytics Econometric tools for performance and risk analysis.

PhySim Phylogenetic tree simulation.

PresenceAbsence Presence-absence model evaluation.

ProbForecastGOP Probabilistic weather field forecasts using the Geostatistical Output Perturbation method introduced by Gel, Raftery and Gneiting (2004).

ProbeR Reliability for gene expression from Affymetrix chip.

ProfessR Programs to determine student grades and create examinations from question banks.

PwrGSD Power in a Group Sequential Design.

QCA Qualitative Comparative Analysis for crisp sets.

QCAgui QCA Graphical User Interface.

QRMlib Code to examine Quantitative Risk Management concepts.

QuantPsyc Quantitative Psychology tools.

R.cache Fast and light-weight caching of objects.

R.huge Methods for accessing huge amounts of data.

R.matlab Read and write of MAT files together with R-to-Matlab connectivity.

R.methodsS3 Utility functions for defining S3 methods.

R.oo R object-oriented programming with or without references.

R.rsp R server pages.

R.utils Utility classes and methods useful when programming in R and developing R packages.

R2HTML Functions for exporting R objects & graphics in an HTML document.

R2WinBUGS Running WinBUGS from R: call a BUGS model, summarize inferences and convergence in a table and graph, and save the simulations in arrays for easy access in R.

RArcInfo Functions to import Arc/Info V7.x coverages and data.

RBGL Interface to the boost C++ graph library.
RBloomberg
Fetch data from a Bloomberg API using COM.

RCColorBrewer
ColorBrewer palettes for drawing nice maps shaded according to a variable.

RDieHarder
R interface to the dieharder random number generator test suite.

RExcelInstaller
Integration of R and Excel under MS Windows.

RFA
Regional Frequency Analysis.

RFOC
Graphics for spherical distributions and earthquake focal mechanisms.

RFreak
An R interface to a modified version of the Free Evolutionary Algorithm Kit FrEAK.g

RGtk2
Facilities for programming graphical interfaces using Gtk (the Gimp Tool Kit) version 2.

RGrace
Mouse/menu driven interactive plotting application.

RGraphics

RHmm
Hidden Markov Model simulations and estimations.

RII
Estimation of the relative index of inequality for interval-censored data using natural cubic splines.

RJDBC
Access to databases through the JDBC interface.

RJaCGH
Reversible Jump MCMC for the analysis of CGH arrays.

RLMM
A genotype calling algorithm for Affymetrix SNP arrays.

RLRsim
Exact (Restricted) Likelihood Ratio tests for mixed and additive models.

RLadyBug
Analysis of infectious diseases using stochastic epidemic models.

RMySQL
An interface between R and the MySQL database system.

RNetCDF
An interface to Unidata’s NetCDF library functions (version 3) and furthermore access to Unidata’s udunits calendar conversions.

ROCR
Visualizing the performance of scoring classifiers.

RODBC
An ODBC database interface.

ROptEst
Optimally robust estimation.

ROptEstTS
Optimally robust estimation for regression-type models.

ROracle
Oracle Database Interface driver for R. Uses the ProC/C++ embedded SQL.
RPMG Poor Man’s Gui: create interactive R analysis sessions.

RPyGeo ArcGIS Geoprocessing in R via Python.

RQuantLib Provides access to (some) of the QuantLib functions from within R; currently limited to some Option pricing and analysis functions. The QuantLib project aims to provide a comprehensive software framework for quantitative finance.

RSAGA SAGA geoprocessing and terrain analysis in R.

RSEIS Seismic time series analysis tools.

RSQlite Database Interface R driver for SQLite. Embeds the SQLite database engine in R.

RScaLAPACK An interface to ScALAPACK functions from R.

RSVGTipsDevice An R svg graphics device with dynamic tips and hyperlinks.

RSeqMeth Analysis of Sequenom EpiTYPER data.

RSvgDevice A graphics device for R that uses the new w3.org XML standard for Scalable Vector Graphics.

RTOMO Visualization for seismic tomography.

RTisean R interface to Tisean algorithms.

RUnit Functions implementing a standard Unit Testing framework, with additional code inspection and report generation tools.

RWeka An R interface to Weka, a rich collection of machine learning algorithms for data mining tasks.

RWinEdt A plug in for using WinEdt as an editor for R.

RXshrink Maximum Likelihood Shrinkage via Ridge or Least Angle Regression.

RadioSonde A collection of programs for reading and plotting SKew-T,log p diagrams and wind profiles for data collected by radiosondes (the typical weather balloon-borne instrument).

RandVar Implementation of random variables by means of S4 classes and methods.

RandomFields Creating random fields using various methods.

RankAggreg Weighted rank aggregation.

RaschSampler Sampling binary matrices with fixed margins.
Chapter 5: R Add-On Packages

Rcapture Loglinear models in capture-recapture experiments.
Rcmdr A platform-independent basic-statistics GUI (graphical user interface) for R, based on the tcltk package.
RcmdrPlugin.Export Graphically export objects to or HTML.
RcmdrPlugin.HH Rcmdr support for the introductory course at Temple University.
RcmdrPlugin.IPSUR Rcmdr plugin for “Introduction to Probability and Statistics Using R”.
RcmdrPlugin.TeachingDemos Rcmdr Teaching Demos plug-in.
RcmdrPlugin.epack Rcmdr epack demos plug-in.
Rcplex R interface to CPLEX solvers for linear, quadratic, and (linear and quadratic) mixed integer programs.
Reliability Functions for estimating parameters in software reliability models.
ResistorArray Electrical properties of resistor networks.
Rfwdmv Forward Search for Multivariate Data.
Rglpk R/GNU Linear Programming Kit interface.
RiboSort Classification and analysis of microbial community profiles.
Rigroup Provides small integer group functions.
Rlab Functions and data sets for the NCSU ST370 class.
Rlsf Interface to the LSF queuing system.
Rmldr R-Multifactor Dimensionality Reduction.
Rmetrics Financial engineering and computational finance.
Rmpi An interface (wrapper) to MPI (Message-Passing Interface) APIs. It also provides an interactive R slave environment in which distributed statistical computing can be carried out.
RobLox Optimally robust influence curves for location and scale.
RobRex Optimally robust influence curves for regression and scale.
Rpad Utility functions for the Rpad workbook-style interface.
Rsac Seismic tools for R.
Rserve A socket server (TCP/IP or local sockets) which allows binary requests to be sent to R.
Rsundials SUite of Nonlinear DIfferential ALgebraic equations Solvers in R.
Rsymphony An R interface to the SYMPHONY mixed integer linear program (MILP) solver.
Runuran Interface to the UNU.RAN library for Universal Non-Uniform RANdom variate generators.
Rvelslant Downhole seismic analysis.
Ryacas An R interfaces to the yacas computer algebra system.
SASxport Read and write SAS XPORT files.
SIN A SINful approach to selection of Gaussian Graphical Markov Models.
SLmisc Miscellaneous Functions for analysis of gene expression data at SIRS-Lab GmbH.
SMC Sequential Monte Carlo (SMC) Algorithm.
SNPassoc SNP-based whole genome association studies.
SNPmaxsel Maximally selected statistics for SNP data.
SRPM Shared Reproducibility Package Management.
SQLiteDF Stores data frames and matrices in SQLite tables.
SciViews A bundle of packages to implement a full reusable GUI API for R. Contains svGUI with the main GUI features, svDialogs for the dialog boxes, svIO for data import/export, svMisc with miscellaneous supporting functions, and svViews providing views and report features (views are HTML presentations of the content of R objects, combining text, tables and graphs in the same document).
SensoMineR
Sensory data analysis.

SeqKnn
Sequential KNN imputation.

SharedHT2
Shared Hotelling T^2 test for small sample microarray experiments.

SimHap
A comprehensive modeling framework for epidemiological outcomes and a multiple-imputation approach to haplotypic analysis of population-based data.

Snowball
Snowball stemmers.

SoDA

SoPhy

SparseLogReg
Sparse logistic regression.

SparseM
Basic linear algebra for sparse matrices.

SpatialNP
Multivariate nonparametric methods based on spatial signs and ranks.

SpherWave
Spherical Wavelets and SW-based spatially adaptive methods.

StatDA

StatDataML
Read and write StatDataML.

SuppDists
Ten distributions supplementing those built into R (Inverse Gauss, Kruskal-Wallis, Kendall’s Tau, Friedman’s chi squared, Spearman’s rho, maximum F ratio, the Pearson product moment correlation coefficient, Johnson distributions, normal scores and generalized hypergeometric distributions).

SwissAir
Air quality data of Switzerland for one year in 30 min resolution.

Synth
Causal inference using the synthetic control group method.

TIMP
A problem solving environment for fitting superposition models.

TRAMPR
Terminal Restriction Fragment Length Polymorphism (TRFLP) Analysis and Matching Package for R.

TSA

TSHRC
Two Stage Hazard Rate Comparison.

TSMMySQL
Time Series Database Interface extensions for MySQL.
<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP</td>
<td>Traveling Salesperson Problem (TSP).</td>
</tr>
<tr>
<td>TSSQLite</td>
<td>Time Series Database Interface extensions for SQLite.</td>
</tr>
<tr>
<td>TSdbi</td>
<td>Time Series Database Interface.</td>
</tr>
<tr>
<td>TSpadi</td>
<td>Connect to a time series database (e.g., Fame) via PADI (Protocol for Application Database Interface), using the TSdbi infrastructure.</td>
</tr>
<tr>
<td>TTR</td>
<td>Technical Trading Rules.</td>
</tr>
<tr>
<td>TWIX</td>
<td>Trees WIth eXtra splits.</td>
</tr>
<tr>
<td>TeachingDemos</td>
<td>A set of demonstration functions that can be used in a classroom to demonstrate statistical concepts, or on your own to better understand the concepts or the programming.</td>
</tr>
<tr>
<td>TwslmSpikeWeight</td>
<td>Normalization of cDNA microarray data with the two-way semilinear model (TW-SLM).</td>
</tr>
<tr>
<td>TwoWaySurvival</td>
<td>Additive two-way hazards modeling of right censored survival data.</td>
</tr>
<tr>
<td>UNF</td>
<td>Tools for creating universal numeric fingerprints for data.</td>
</tr>
<tr>
<td>USPS</td>
<td>Unsupervised and Supervised methods of Propensity Score adjustment for bias.</td>
</tr>
<tr>
<td>Umacs</td>
<td>Universal MArkov Chain Sampler.</td>
</tr>
<tr>
<td>UsingR</td>
<td>Data sets to accompany the textbook “Using R for Introductory Statistics” by J. Verzani, 2005, Chapman & Hall/CRC.</td>
</tr>
<tr>
<td>VDCutil</td>
<td>Utilities supporting VDC, an open source digital library system for quantitative data.</td>
</tr>
<tr>
<td>VGAM</td>
<td>Vector Generalized Linear and Additive Models.</td>
</tr>
<tr>
<td>VIM</td>
<td>Visualization and Imputation of Missing Values.</td>
</tr>
<tr>
<td>VLMC</td>
<td>Functions, classes & methods for estimation, prediction, and simulation (bootstrap) of VLMC (Variable Length Markov Chain) models.</td>
</tr>
<tr>
<td>VaR</td>
<td>Methods for calculation of Value at Risk (VaR).</td>
</tr>
<tr>
<td>WINRPACK</td>
<td>Reads in WIN pickfile and waveform files.</td>
</tr>
<tr>
<td>WeedMap</td>
<td>Map of weed intensity.</td>
</tr>
<tr>
<td>WhatIf</td>
<td>Software for evaluating counterfactuals.</td>
</tr>
<tr>
<td>XML</td>
<td>Tools for reading XML documents and DTDs.</td>
</tr>
</tbody>
</table>
XReg Extreme regression.

YaleToolkit Data exploration tools from Yale University.

ZIGP Zero Inflated Generalized Poisson (ZIGP) regression models.

Zelig Everyone’s statistical software: an easy-to-use program that can estimate, and help interpret the results of, an enormous range of statistical models.

aaMI Mutual information for protein sequence alignments.

abind Combine multi-dimensional arrays.

accuracy A suite of tools designed to test and improve the accuracy of statistical computation.

acepack ACE (Alternating Conditional Expectations) and AVAS (Additivity and VAriance Stabilization for regression) methods for selecting regression transformations.

actuar Functions related to actuarial science applications.

ada Performs boosting algorithms for a binary response.

adabag Adaboost.M1 and Bagging.

adapt Adaptive quadrature in up to 20 dimensions.

ade4 Multivariate data analysis and graphical display.

ade4TkGUI Tcl/Tk Graphical User Interface for ade4.

adegenet Genetic data handling for multivariate analysis using ade4.

adehabitat A collection of tools for the analysis of habitat selection by animals.

adimpro Adaptive smoothing of digital images.

adk Anderson-Darling K-sample test and combinations of such tests.

adlift Adaptive Wavelet transforms for signal denoising.

ads Spatial point patterns analysis.

agce Analysis of growth curve experiments.

agricolae Statistical procedures for agricultural research.

agsemisc Miscellaneous plotting and utility functions.

akima Linear or cubic spline interpolation for irregularly gridded data.

allelic A fast, unbiased and exact allelic exact test.

alr3 Methods and data to accompany the textbook “Applied Linear Regression” by S. Weisberg, 2005, Wiley.

amap Another Multidimensional Analysis Package.
anacor Simple and Canonical Correspondence Analysis.
analogue Analogue methods for palaeoecology.
anapuce Tools for microarray data analysis.
animation Demonstrate animations in statistics.
anm Analog model for statistical/empirical downscaling.
aod Analysis of Overdispersed Data.
apTreeshape Analyses of phylogenetic treeshape.
aplpack Another PLoT PACKage: stem.leaf, bagplot, faces, spin3R, . . .
argosfilter Argos locations filter.
am Data Analysis using Regression and Multilevel/hierarchical models.
arrayImpute Missing imputation for microarray data.
arrayMissPattern Exploratory analysis of missing patterns for microarray data.
arulestools Mining association rules and frequent itemsets with R.
arulesSequences Mining frequent sequences.
ash David Scott’s ASH routines for 1D and 2D density estimation.
aspace Estimating centrographic statistics and computational geometries from spatial point patterns.
assist A suite of functions implementing smoothing splines.
aster Functions and datasets for Aster modeling (forest graph exponential family conditional or unconditional canonical statistic models for life history trait modeling).
asypow A set of routines that calculate power and related quantities utilizing asymptotic likelihood ratio methods.
asuR Functions and data sets for a lecture in “Advanced Statistics using R”.
aws Functions to perform adaptive weights smoothing.
backfitRichards
 Backfitted independent values of Richards curves.
backtest
 Exploring portfolio-based hypotheses about financial instruments.
bayesSurv
 Bayesian survival regression with flexible error and (later on also random effects) distributions.
bayescount
 Bayesian analysis of count distributions with JAGS.
bayesm
 Bayes Inference for Marketing/Micro-econometrics.
bayesmix
 Bayesian mixture models of univariate Gaussian distributions using JAGS.
bbmle
 Modifications and extensions of stats4 MLE code.
bcp
 Bayesian Change Point based on the Barry and Hartigan product partition model.
benchden
 28 benchmark densities from Berlinet/Devroye (1994).
betareg
 Beta regression for modeling rates and proportions.
bs
 Utilities for the Birnbaum-Saunders distribution.
biOps
 Basic image operations and image processing.
biOpsGUI
 GUI for Basic image operations.
biclust
 BiCluster algorithms.
bicreduc
 Reduction algorithm for the NPMLE for the distribution function of bivariate interval-censored data.
bifactorial
 Inferences for bi- and trifactorial trial designs.
biglm
 Linear regression for data too large to fit in memory.
bim
 Bayesian interval mapping diagnostics: functions to interpret QTLCart and Bmapqtl samples.
binGroup
 Evaluation and experimental design for binomial group testing.
binMto
 Asymptotic simultaneous confidence intervals for many-to-one comparisons of proportions.
bindata
 Generation of correlated artificial binary data.
binom
 Binomial confidence intervals for several parameterizations.
bio.infer
 Compute biological inferences.
biopara
 Self-contained parallel system for R.
bipartite
 Visualises bipartite networks and calculates some ecological indices.
birch
 Dealing with very large datasets using BIRCH.
bitops
 Functions for Bitwise operations on integer vectors.
bivpois
 Bivariate Poisson models using the EM algorithm.
<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bighty</td>
<td>Function for drawing the coastline of the United Kingdom.</td>
</tr>
<tr>
<td>blockTools</td>
<td>Block, randomly assign, and diagnose potential problems between units in randomized experiments.</td>
</tr>
<tr>
<td>blockrand</td>
<td>Randomization for block random clinical trials.</td>
</tr>
<tr>
<td>bnlearn</td>
<td>Bayesian network structure learning.</td>
</tr>
<tr>
<td>boa</td>
<td>Bayesian Output Analysis Program for MCMC.</td>
</tr>
<tr>
<td>boolean</td>
<td>Boolean logit and probit: a procedure for testing Boolean hypotheses.</td>
</tr>
<tr>
<td>bootStepAIC</td>
<td>Model selection by bootstrapping the <code>stepAIC()</code> procedure.</td>
</tr>
<tr>
<td>bqtl</td>
<td>QTL mapping toolkit for inbred crosses and recombinant inbred lines. Includes maximum likelihood and Bayesian tools.</td>
</tr>
<tr>
<td>brainwaver</td>
<td>Basic wavelet analysis of multivariate time series with a visualisation and parametrisation using graph theory.</td>
</tr>
<tr>
<td>brew</td>
<td>Templating framework for report generation.</td>
</tr>
<tr>
<td>brglm</td>
<td>Bias-reduction in binomial-response GLMs.</td>
</tr>
<tr>
<td>brlr</td>
<td>Bias-reduced logistic regression: fits logistic regression models by maximum penalized likelihood.</td>
</tr>
<tr>
<td>butler</td>
<td>Unit testing, profiling and benchmarking for R.</td>
</tr>
<tr>
<td>bvls</td>
<td>The Stark-Parker algorithm for bounded-variable least squares.</td>
</tr>
<tr>
<td>ca</td>
<td>Simple, multiple and joint Correspondence Analysis.</td>
</tr>
<tr>
<td>caMassClass</td>
<td>Processing and Classification of protein mass spectra (SELDI) data.</td>
</tr>
<tr>
<td>caTools</td>
<td>Miscellaneous utility functions, including reading/writing ENVI binary files, a LogitBoost classifier, and a base64 encoder/decoder.</td>
</tr>
<tr>
<td>cacheSweave</td>
<td>Tools for caching Sweave computations.</td>
</tr>
<tr>
<td>cacher</td>
<td>Tools for caching and distributing statistical analyses.</td>
</tr>
<tr>
<td>cairoDevice</td>
<td>Loadable CAIRO/GTK device driver.</td>
</tr>
<tr>
<td>Package</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>calib</td>
<td>Statistical tool for calibration of plate based bioassays.</td>
</tr>
<tr>
<td>calibrate</td>
<td>Calibration of biplot axes.</td>
</tr>
<tr>
<td>candisc</td>
<td>Generalized canonical discriminant analysis.</td>
</tr>
<tr>
<td>car</td>
<td>Companion to Applied Regression, containing functions for applied regression, linear models, and generalized linear models, with an emphasis on regression diagnostics, particularly graphical diagnostic methods.</td>
</tr>
<tr>
<td>caret</td>
<td>Classification and REgression Training.</td>
</tr>
<tr>
<td>caretLSF</td>
<td>Classification and REgression Training, LSF style.</td>
</tr>
<tr>
<td>caretNWS</td>
<td>Classification and REgression Training in parallel using NetworkSpaces.</td>
</tr>
<tr>
<td>cat</td>
<td>Analysis of categorical-variable datasets with missing values.</td>
</tr>
<tr>
<td>catmap</td>
<td>Case-control and TDT meta-analysis package.</td>
</tr>
<tr>
<td>catspec</td>
<td>Special models for categorical variables.</td>
</tr>
<tr>
<td>cba</td>
<td>Clustering for Business Analytics, including implementations of Proximus and Rock.</td>
</tr>
<tr>
<td>cclust</td>
<td>Convex clustering methods, including k-means algorithm, on-line update algorithm (Hard Competitive Learning) and Neural Gas algorithm (Soft Competitive Learning) and calculation of several indexes for finding the number of clusters in a data set.</td>
</tr>
<tr>
<td>celsius</td>
<td>Retrieve Affymetrix microarray measurements and metadata from Celsius.</td>
</tr>
<tr>
<td>cfa</td>
<td>Analysis of configuration frequencies.</td>
</tr>
<tr>
<td>cggd</td>
<td>Continuous Generalized Gradient Descent.</td>
</tr>
<tr>
<td>cgh</td>
<td>Analysis of microarray comparative genome hybridisation data using the Smith-Waterman algorithm.</td>
</tr>
<tr>
<td>cghFLasso</td>
<td>Hot spot detecting for CGH array data with fused lasso regression.</td>
</tr>
<tr>
<td>chplot</td>
<td>Augmented convex hull plots: informative and nice plots for grouped bivariate data.</td>
</tr>
<tr>
<td>changeLOS</td>
<td>Change in length of hospital stay (LOS).</td>
</tr>
<tr>
<td>cheb</td>
<td>Discrete linear Chebyshev approximation.</td>
</tr>
<tr>
<td>chemCal</td>
<td>Calibration functions for analytical chemistry.</td>
</tr>
<tr>
<td>choplump</td>
<td>Choplump tests (permutation tests for comparing two groups with some positive but many zero responses).</td>
</tr>
<tr>
<td>chron</td>
<td>A package for working with chronological objects (times and dates).</td>
</tr>
</tbody>
</table>
cir Nonparametric estimation of monotone functions via isotonic regression and centered isotonic regression.
clValid Statistical and biological validation of clustering results.
clac Clust Along Chromosomes, a method to call gains/losses in CGH array data.
class Functions for classification (k-nearest neighbor and LVQ). Contained in the ‘VR’ bundle. Recommended.
classGraph Construct graph of S4 class hierarchies.
classInt Choose univariate class intervals for mapping or other graphics purposes.
classPP Projection Pursuit for supervised classification.
classify Explore classification models in high dimensions.
clim.pact Climate analysis and downscaling for monthly and daily data.
climatol Functions to fill missing data in climatological (monthly) series and to test their homogeneity, plus functions to draw wind-rose and Walter&Lieth diagrams.
clinfun Utilities for clinical study design and data analyses.
clue CLUster Ensembles.
clustTool GUI for clustering data with spatial information.
cluster Functions for cluster analysis. Recommended.
clusterGeneration Random cluster generation (with specified degree of separation).
clusterRepro Reproducibility of gene expression clusters.
clusterSim Searching for optimal clustering procedure for a data set.
clusterfly Explore clustering interactively using R and GGobi.
clustvarsel Variable selection for model-based clustering.
clv Cluster validation techniques.
cmprsk Estimation, testing and regression modeling of subdistribution functions in competing risks.
cobs Constrained B-splines: qualitatively constrained (regression) smoothing via linear programming and sparse matrices.
cocorresp Co-correspondence analysis ordination methods for community ecology.
coda
Output analysis and diagnostics for Markov Chain Monte Carlo (MCMC) simulations.

codetools
Code analysis tools. *Recommended* for R 2.5.0 or later.

coin
COnditional INference procedures for the general independence problem including two-sample, \(K \)-sample, correlation, censored, ordered and multivariate problems.

colorRamp
Builds single and double gradient color maps.

colorspace
Mapping between assorted color spaces.

combinat
Combinatorics utilities.

compHclust
Complementary hierarchical clustering.

compOverlapCorr
Comparing overlapping correlation coefficients.

compositions
Functions for the consistent analysis of compositional data (e.g., portions of substances) and positive numbers (e.g., concentrations).

concor
Concordance, providing “SVD by blocks”.

concord
Measures of concordance and reliability.

conf.design
A series of simple tools for constructing and manipulating confounded and fractional factorial designs.

connectedness
Find disconnected sets for two-way classification.

contrast
A collection of contrast methods.

copula
Classes of commonly used copulas (including elliptical and Archimedian), and methods for density, distribution, random number generators, and plotting.

corpora
Utility functions for the statistical analysis of corpus frequency data.

corpcor
Efficient estimation of covariance and (partial) correlation.

corrgram
Plot a correlogram.

corrperm
Permutation tests of correlation with repeated measurements.

covRobust
Robust covariance estimation via nearest neighbor cleaning.

coxphf
Cox regression with Firth’s penalized likelihood.

coxrobust
Robust Estimation in the Cox proportional hazards regression model.

cramer
Routine for the multivariate nonparametric Cramer test.

crank
Functions for completing and recalculating rankings.
crossdes Functions for the construction and randomization of balanced carryover balanced designs, to check given designs for balance, and for simulation studies on the validity of two randomization procedures.

crosshybDetector Detection of cross-hybridization events in microarray experiments.

crq Quantile regression for randomly censored data.

cslogistic Likelihood and posterior analysis of conditionally specified logistic regression models.

cts Continuous time autoregressive models and the Kalman filter.

ctv Server-side and client-side tools for CRAN task views.

cwhmisc Miscellaneous functions by Christian W. Hoffmann.

cyclones Cyclone identification.

date Functions for dealing with dates. The most useful of them accepts a vector of input dates in any of the forms '8/30/53', '30Aug53', '30 August 1953', . . ., 'August 30 53', or any mixture of these.

dblcens Calculates the NPMLE of the survival distribution for doubly censored data.

ddesolve Solver for Delay Differential Equations.

deal Bayesian networks with continuous and/or discrete variables can be learned and compared from data.

debug Debugger for R functions, with code display, graceful error recovery, line-numbered conditional breakpoints, access to exit code, flow control, and full keyboard input.

degreenet Models for skewed count distributions relevant to networks.

deldir Calculates the Delaunay triangulation and the Dirichlet or Voronoi tesselation (with respect to the entire plane) of a planar point set.

delt Estimation of multivariate densities with adaptive histograms.

demogR Analysis of age-structured demographic models.

denpro Visualization of multivariate density functions and estimates with level set trees and shape trees, and visualization of multivariate data with tail trees.

depmix Dependent Mixture Models: fit (multi-group) mixtures of latent Markov models on mixed categorical and continuous (time series) data.

depmixS4 Dependent Mixture Models: fit latent (hidden) Markov models on mixed categorical and continuous (time series) data.

desirability Desirability function optimization and ranking.

dglm Double generalized linear models.

diagram Functions for visualising simple graphs (networks) and plotting flow diagrams.
diamonds Functions for illustrating aperture-4 diamond partitions in the plane, or on the surface of an octahedron or icosahedron, for use as analysis or sampling grids.
dice Calculate probabilities of various dice-rolling events.
dichromat Color schemes for dichromats: collapse red-green distinctions to simulate the effects of colour-blindness.
digest Two functions for the creation of “hash” digests of arbitrary R objects using the md5 and sha-1 algorithms permitting easy comparison of R language objects.
diptest Compute Hartigan’s dip test statistic for unimodality.
dispmod Functions for modelling dispersion in GLMs.
distr An object orientated implementation of distributions and some additional functionality.
distrDoc Documentation for packages distr, distrEx, distrSim, and distrTEst.
distrEx Extensions of package distr.
distrSim Simulation classes based on package distr.
distrTEst Estimation and Testing classes based on package distr.
distributions Probability distributions based on TI-83 Plus.
diveMove Dive analysis and calibration.
dlm Maximum likelihood and Bayesian analysis of Dynamic Linear Models.
doBy Facilities for groupwise computations.
dplR Dendrochronology Program Library in R.
dprep Data preprocessing and visualization functions for classification.
dr Functions, methods, and datasets for fitting dimension reduction regression, including pHd and inverse regression methods SIR and SAVE.
drc Non-linear regression analysis for multiple curves with focus on concentration-response, dose-response and time-response curves.
drm Regression and association models for clustered categorical responses.
drfit Dose-response data evaluation.
dse Dynamic System Estimation, a multivariate time series package bundle. Contains dse1 (the base system, including multivariate ARMA and state space models) and dse2 (extensions for evaluating estimation techniques, forecasting, and for evaluating forecasting model).
dtt Discrete Trigonometric Transforms.
dtw Dynamic Time Warping algorithms.
dyn Time series regression.
<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamicGraph</td>
<td>Interactive graphical tool for manipulating graphs.</td>
</tr>
<tr>
<td>dynamicTreeCut</td>
<td>Methods for detection of clusters in hierarchical clustering dendrograms.</td>
</tr>
<tr>
<td>dynlm</td>
<td>Dynamic linear models and time series regression.</td>
</tr>
<tr>
<td>e1071</td>
<td>Miscellaneous functions used at the Department of Statistics at TU Wien (E1071), including moments, short-time Fourier transforms, Independent Component Analysis, Latent Class Analysis, support vector machines, and fuzzy clustering, shortest path computation, bagged clustering, and some more.</td>
</tr>
<tr>
<td>eRm</td>
<td>Estimating extended Rasch models.</td>
</tr>
<tr>
<td>earth</td>
<td>Earth: multivariate adaptive regression spline models.</td>
</tr>
<tr>
<td>eba</td>
<td>Fitting and testing probabilistic choice models, especially the BTL, elimination-by-aspects (EBA), and preference tree (Pretree) models.</td>
</tr>
<tr>
<td>ecespa</td>
<td>Functions and data for spatial point pattern analysis.</td>
</tr>
<tr>
<td>eco</td>
<td>Fitting Bayesian models of ecological inference in 2 by 2 tables.</td>
</tr>
<tr>
<td>ecodist</td>
<td>Dissimilarity-based functions for ecological analysis.</td>
</tr>
<tr>
<td>effects</td>
<td>Graphical and tabular effect displays, e.g., of interactions, for linear and generalised linear models.</td>
</tr>
<tr>
<td>eha</td>
<td>A package for survival and event history analysis.</td>
</tr>
<tr>
<td>eiPack</td>
<td>Ecological inference and higher-dimension data management.</td>
</tr>
<tr>
<td>eigenmodel</td>
<td>Semiparametric factor and regression models for symmetric relational data.</td>
</tr>
<tr>
<td>elasticnet</td>
<td>Elastic net regularization and variable selection.</td>
</tr>
<tr>
<td>ellipse</td>
<td>Package for drawing ellipses and ellipse-like confidence regions.</td>
</tr>
<tr>
<td>elliptic</td>
<td>A suite of elliptic and related functions including Weierstrass and Jacobi forms.</td>
</tr>
<tr>
<td>elrm</td>
<td>Exact Logistic Regression via MCMC.</td>
</tr>
<tr>
<td>emdbook</td>
<td>Data sets and auxiliary functions for “Ecological Models and Data” by Ben Bolker (work in progress).</td>
</tr>
<tr>
<td>emme2</td>
<td>Functions to read from and write to an EMME/2 databank.</td>
</tr>
<tr>
<td>emplik</td>
<td>Empirical likelihood ratio for means/quantiles/hazards from possibly right censored data.</td>
</tr>
<tr>
<td>emu</td>
<td>Interface to the Emu speech database system.</td>
</tr>
<tr>
<td>energy</td>
<td>E-statistics (energy) tests for comparing distributions: multivariate normality, Poisson test, multivariate k-sample test for equal distributions, hierarchical clustering by e-distances.</td>
</tr>
</tbody>
</table>
| ensembleBMA | Probabilistic forecasting using Bayesian Model Averaging of ensembles using a mixture of normal distributions. }
epiR Functions for analyzing epidemiological data.
epibasix Elementary functions for epidemiological analysis.
epicalc Epidemiological calculator.
epitools Basic tools for applied epidemiology.
epsi Edge Preserving Smoothing for Images.
equivalence Tests and graphics for assessing tests of equivalence.
ergm An integrated set of tools to analyze and simulate networks based on exponential-family random graph models (ERGM).
evd Functions for extreme value distributions. Extends simulation, distribution, quantile and density functions to univariate, bivariate and (for simulation) multivariate parametric extreme value distributions, and provides fitting functions which calculate maximum likelihood estimates for univariate and bivariate models.
evdbayes Functions for the bayesian analysis of extreme value models, using MCMC methods.
evir Extreme Values in R: Functions for extreme value theory, which may be divided into the following groups; exploratory data analysis, block maxima, peaks over thresholds (univariate and bivariate), point processes, gev/gpd distributions.
extLoglinTest Monte Carlo exact tests for log-linear models.
exactRankTests Computes exact p-values and quantiles using an implementation of the Streitberg/Roehmel shift algorithm.
extmaxsel Exact methods for maximally selected statistics for binary response variables.
experiment Designing and analyzing randomized experiments.
extRemes Extreme value toolkit.
fArma The Rmetrics module for “ARMA Time Series Modelling”.
fAsianOptions The Rmetrics module for “Option Valuation”.
fAssets The Rmetrics module for “Assets Selection and Modelling”.
fBasics The Rmetrics module for “Markets and Basic Statistics”.
fBonds The Rmetrics module for “Bonds and Interest Rate Models”.
fCalendar The Rmetrics module for “Chronological and Calendarical Objects”.
fCopulae The Rmetrics module for “Dependence Structures with Copulas”.

fEcofin The Rmetrics module for “Economic and Financial Data Sets”.
fExoticOptions The Rmetrics module for “Option Valuation”.
fExtremes The Rmetrics module for “Extreme Financial Market Data”.
fGarch The Rmetrics module for “Autoregressive Conditional Heteroskedastic Modelling”.
fImport The Rmetrics module for “Chronological and Calendarical Objects”.
fMultivar The Rmetrics module for “Multivariate Market Analysis”.
fNonlinear The Rmetrics module for “Nonlinear and Chaotic Time Series Modelling”.
fOptions The Rmetrics module for “Basics of Option Valuation”.
fPortfolio The Rmetrics module for “Portfolio Selection and Optimization”.
fRegression The Rmetrics module for “Regression Based Decision and Prediction”.
fSeries The Rmetrics module for “Financial Time Series Objects”.
fTrading The Rmetrics module for “Technical Trading Analysis”.
fUnitRoots The Rmetrics module for “The Dynamical Process Behind Markets”.
fUtilities The Rmetrics module for “Rmetrics Function Utilities”.
fame Interface for FAME time series database.
far Modelization for Functional AutoRegressive processes.
faraway Functions and datasets for books by Julian Faraway.
fastICA Implementation of FastICA algorithm to perform Independent Component Analysis (ICA) and Projection Pursuit.
fdal Functiona Data Analysis: analysis of data where the basic observation is a function of some sort.
fdim Functions for calculating fractal dimension.
fdrtool Estimation and control of (local) False Discovery Rates.
feature Feature significance for multivariate kernel density estimation.
femmeR Output analysis of FEMME model results.
ff Flat file database designed for large vectors and multi-dimensional arrays.
ffmanova Fifty-fifty MANOVA.
fgac Families of Generalized Archimedean Copulas.
fields A collection of programs for curve and function fitting with an emphasis on spatial data. The major methods implemented include cubic and thin plate splines, universal Kriging and Kriging for large data sets. The main feature is that any covariance function implemented in R can be used for spatial prediction.
<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filehash</td>
<td>Simple file-based hash table.</td>
</tr>
<tr>
<td>filehashSQLite</td>
<td>Simple key-value database using SQLlite as the backend.</td>
</tr>
<tr>
<td>financial</td>
<td>Solving financial problems in R.</td>
</tr>
<tr>
<td>fingerprint</td>
<td>Functions to operate on binary fingerprint data.</td>
</tr>
<tr>
<td>flexclust</td>
<td>Flexible cluster algorithms.</td>
</tr>
<tr>
<td>flexmix</td>
<td>Flexible Mixture Modeling: a general framework for finite mixtures of regression models using the EM algorithm.</td>
</tr>
<tr>
<td>fmri</td>
<td>Functions for the analysis of fMRI experiments.</td>
</tr>
<tr>
<td>forecasting</td>
<td>A bundle with functions and datasets for forecasting. Contains <code>forecast</code> (time series forecasting), <code>fma</code> (data sets from the book “Forecasting: Methods and Applications” by Makridakis, Wheelwright & Hyndman, 1998), and <code>Mcomp</code> (data from the M-competitions).</td>
</tr>
<tr>
<td>foreign</td>
<td>Functions for reading and writing data stored by statistical software like Minitab, S, SAS, SPSS, Stata, Systat, etc. Recommended.</td>
</tr>
<tr>
<td>forensic</td>
<td>Statistical methods in forensic genetics.</td>
</tr>
<tr>
<td>fork</td>
<td>Functions for handling multiple processes: simple wrappers around the Unix process management API calls.</td>
</tr>
<tr>
<td>fortunes</td>
<td>R fortunes.</td>
</tr>
<tr>
<td>forward</td>
<td>Forward search approach to robust analysis in linear and generalized linear regression models.</td>
</tr>
<tr>
<td>fpc</td>
<td>Fixed point clusters, clusterwise regression and discriminant plots.</td>
</tr>
<tr>
<td>fpca</td>
<td>Restricted MLE for Functional Principal Components Analysis.</td>
</tr>
<tr>
<td>fractal</td>
<td>Insightful fractal time series modeling and analysis.</td>
</tr>
<tr>
<td>frailtypack</td>
<td>Fit a shared gamma frailty model and Cox proportional hazards model using a Penalized Likelihood on the hazard function.</td>
</tr>
<tr>
<td>fso</td>
<td>Fuzzy set ordination.</td>
</tr>
<tr>
<td>ftnonpar</td>
<td>Features and strings for nonparametric regression.</td>
</tr>
<tr>
<td>fuzzyFDR</td>
<td>Exact calculation of fuzzy decision rules for multiple testing.</td>
</tr>
<tr>
<td>fuzzyRankTests</td>
<td>Fuzzy rank tests and confidence intervals.</td>
</tr>
<tr>
<td>fxregime</td>
<td>Frankel-Wei regression and structural change tools for estimating, testing, dating and monitoring (de facto) exchange rate regimes.</td>
</tr>
</tbody>
</table>
g.data Create and maintain delayed-data packages (DDP’s).
gRain Probability propagation in graphical independence networks.
gRbase A package for graphical modelling in R. Defines S4 classes for graphical meta data and graphical models, and illustrates how hierarchical log-linear models may be implemented and combined with dynamicGraph.
gRc Inference in graphical Gaussian models with edge and vertex symmetries.
gWidgets gWidgets API for building toolkit-independent, interactive GUIs.
gWidgetsRGtk2 Toolkit implementation of gWidgets for RGtk2.
gWidgetsrJava Toolkit implementation of gWidgets for rJava.
gWidgetsstcltk Toolkit implementation of gWidgets for tcltk.
gafit Genetic algorithm for curve fitting.
gamlss Functions to fit Generalized Additive Models for Location Scale and Shape.
gamlss.cens A GAMLSS add on package for censored data.
gamlss.dist Extra distributions for GAMLSS modeling.
gamlss.mx A GAMLSS add on package for fitting mixture distributions.
gamlss.nl A GAMLSS add on package for fitting non linear parametric models.
gamlss.tr A GAMLSS add on for generating and fitting truncated (gamlss.family) distributions.
gap Genetic analysis package for both population and family data.
gbev Gradient Boosted regression trees with Errors-in-Variables.
gcl Compute a fuzzy rules or tree classifier from data.
gclus Clustering Graphics. Orders panels in scatterplot matrices and parallel coordinate displays by some merit index.
<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gcmrec</td>
<td>Parameters estimation of the general semiparametric model for recurrent event data proposed by Peña and Hollander.</td>
</tr>
<tr>
<td>gdata</td>
<td>Various functions to manipulate data.</td>
</tr>
<tr>
<td>gee</td>
<td>An implementation of the Liang/Zeger generalized estimating equation approach to GLMs for dependent data.</td>
</tr>
<tr>
<td>geepack</td>
<td>Generalized estimating equations solver for parameters in mean, scale, and correlation structures, through mean link, scale link, and correlation link. Can also handle clustered categorical responses.</td>
</tr>
<tr>
<td>geiger</td>
<td>Analysis of evolutionary diversification.</td>
</tr>
<tr>
<td>genalg</td>
<td>R based genetic algorithm for binary and floating point chromosomes.</td>
</tr>
<tr>
<td>genetics</td>
<td>Classes and methods for handling genetic data. Includes classes to represent genotypes and haplotypes at single markers up to multiple markers on multiple chromosomes, and functions for allele frequencies, flagging homo/heterozygotes, flagging carriers of certain alleles, computing disequilibrium, testing Hardy-Weinberg equilibrium, . . .</td>
</tr>
<tr>
<td>geoR</td>
<td>Functions to perform geostatistical data analysis including model-based methods.</td>
</tr>
<tr>
<td>geoRglm</td>
<td>Functions for inference in generalised linear spatial models.</td>
</tr>
<tr>
<td>geomapdata</td>
<td>Data for topographic and geologic mapping.</td>
</tr>
<tr>
<td>geometry</td>
<td>Mesh generation and surface tesselation, based on the Qhull library.</td>
</tr>
<tr>
<td>geozoo</td>
<td>Definition of geometric objects and display via rggobi.</td>
</tr>
<tr>
<td>getopt</td>
<td>C-like getopt behavior for R scripts.</td>
</tr>
<tr>
<td>ggm</td>
<td>Functions for defining directed acyclic graphs and undirected graphs, finding induced graphs and fitting Gaussian Markov models.</td>
</tr>
<tr>
<td>ggplot</td>
<td>Grammar of graphics based plots for R.</td>
</tr>
<tr>
<td>ggplot2</td>
<td>An implementation of the Grammar of Graphics in R.</td>
</tr>
<tr>
<td>ghyp</td>
<td>Univariate and multivariate generalized hyperbolic distributions.</td>
</tr>
<tr>
<td>giRaph</td>
<td>Data structures and algorithms for computations on graphs.</td>
</tr>
<tr>
<td>gibbs.met</td>
<td>Naive Gibbs sampling with Metropolis steps.</td>
</tr>
<tr>
<td>glasso</td>
<td>Graphical lasso.</td>
</tr>
<tr>
<td>gld</td>
<td>Basic functions for the generalised (Tukey) lambda distribution.</td>
</tr>
<tr>
<td>gllm</td>
<td>Routines for log-linear models of incomplete contingency tables, including some latent class models via EM and Fisher scoring approaches.</td>
</tr>
<tr>
<td>glmc</td>
<td>Fitting Generalized Linear Models subject to Constraints.</td>
</tr>
<tr>
<td>glmmAK</td>
<td>Generalized Linear Mixed Models.</td>
</tr>
</tbody>
</table>
glmmML A Maximum Likelihood approach to generalized linear models with random intercept.

glmpath L1 regularization path for Generalized Linear Models.

glpk Interface to the GNU Linear Programming Kit (GLPK).

gmaps Wrapper and auxiliary functions for the maps package to work with the grid graphics system.

gmodels Various functions to manipulate models.

gmp Arithmetic “without limitations” using the GNU Multiple Precision library.

gmt Interface between the GMT 4.0 map-making software and R.

gum Functions to specify and fit generalized nonlinear models, including models with multiplicative interaction terms such as the UNIDIFF model from sociology and the AMMI model from crop science.

goalprog Weighted and lexicographical goal programming and optimization.

gpclib General polygon clipping routines for R based on Alan Murta’s C library.

gpls Classification using generalized partial least squares for two-group and multi-group (more than 2 group) classification.

gplots Various functions to draw plots.

grImport Importing vector graphics.

granova Graphical Analysis of Variance.

graph Handling of graph data structures.

grass Generalized Regression Analysis and Spatial Predictions for R.

gregmisc Miscellaneous functions written/maintained by Gregory R. Warnes.

gridBase Integration of base and grid graphics.

grunR A Generalized Regression Neural Network.

grouped Regression models for grouped and coarse data, under the Coarsened At Random assumption.

grplasso Fit user specified models with group lasso penalty.

gsl Wrapper for special functions of the Gnu Scientific Library (GSL).

Gss A comprehensive package for structural multivariate function estimation using smoothing splines.

gstat Multivariable geostatistical modelling, prediction and simulation. Includes code for variogram modelling; simple, ordinary and universal point or block (co)kriging, sequential Gaussian or indicator (co)simulation, and map plotting functions.

gsubfn Miscellaneous string utilities.

gtools Various functions to help manipulate data.
gvlna Global Validation of Linear Models Assumptions.
gvlma Global Validation of Linear Models Assumptions.

gvlma Global Validation of Linear Models Assumptions.
 hapassoc Likelihood inference of trait associations with SNP haplotypes and other attributes using the EM Algorithm.
 haplo.ccs Estimate haplotype relative risks in case-control data.
 haplo.stats Statistical analysis of haplotypes with traits and covariates when linkage phase is ambiguous.
 hapsim Haplotype data simulation.
 hbim Hill/Bliss Independence Model for combination vaccines.
 hddplot Use known groups in high-dimensional data to derive scores for plots.
 hdeco Hierarchical DECOmposition of entropy for categorical map comparisons.
 hdf5 Interface to the ncsa HDF5 library.
 hdrcde Highest Density Regions and Conditional Density Estimation.
 heatmap.plus Heatmap with sensible behavior.
 heplots Visualizing tests in multivariate linear models.
 hett Functions for the fitting and summarizing of heteroscedastic t-regression.
 hexView Viewing binary files.
 hier.part Hierarchical Partitioning: variance partition of a multivariate data set.
 hierfstat Estimation of hierarchical F-statistics from haploid or diploid genetic data with any numbers of levels in the hierarchy, and tests for the significance of each F and variance components.
 hints Provide hints on what to do next.
 hmm.discnp Hidden Markov models with discrete non-parametric observation distributions.
 hoa A bundle of packages for higher order likelihood-based inference. Contains cond for approximate conditional inference for logistic and loglinear models, csampling for conditional simulation in regression-scale models, marg for approximate marginal inference for regression-scale models, and nllreg for higher order inference for nonlinear heteroscedastic models.
 homals Homogeneity Analysis (HOMALS) package with optional Tcl/Tk interface.
 homtest Homogeneity tests for regional frequency analysis.
 hopach Hierarchical Ordered Partitioning and Collapsing Hybrid (HOPACH).
 hot Computation on micro-arrays.
 howmany A lower bound for the number of correct rejections.
 hsmm Hidden Semi Markov Models.
httpRequest
Implements HTTP Request protocols (GET, POST, and multipart POST requests).

hwde
Models and tests for departure from Hardy-Weinberg equilibrium and independence between loci.

hybridHclust
Hybrid hierarchical clustering via mutual clusters.

hydrogeo
Groundwater data presentation and interpretation.

hydrosanity
Graphical user interface for exploring hydrological time series.

ibdreg
Regression methods for IBD linkage with covariates.

identity
Jacquard condensed coefficients of identity.

ifa
Independent Factor Analysis.

ifs
Iterated Function Systems distribution function estimator.

ifultools
Insightful research tools.

ig
Robust and classical versions of the inverse Gaussian distribution.

igraph
Routines for simple graphs.

iid.test
Testing whether data is independent and identically distributed.

impute
Imputation for microarray data (currently KNN only).

ineq
Inequality, concentration and poverty measures, and Lorenz curves (empirical and theoretic).

inetwork
Network analysis and plotting.

inline
Inline C/C++ function calls from R.

intcox
Implementation of the Iterated Convex Minorant Algorithm for the Cox proportional hazard model for interval censored event data.

iplots
Interactive graphics for R.

ipred
Improved predictive models by direct and indirect bootstrap aggregation in classification and regression as well as resampling based estimators of prediction error.

irr
Coefficients of Interrater Reliability and Agreement for quantitative, ordinal and nominal data.

irtoys
Simple interface to the estimation and plotting of IRT models.

ismev
Functions to support the computations carried out in “An Introduction to Statistical Modeling of Extreme Values;' by S. Coles, 2001, Springer. The functions may be divided into the following groups; maxima/minima, order statistics, peaks over thresholds and point processes.

its
An S4 class for handling irregular time series.
ivivc In vitro in vivo correlation (IVIVC) modeling.

jit Just-in-time compiler.

kappalab The “laboratory for capacities”, an S4 tool box for capacity (or non-additive measure, fuzzy measure) and integral manipulation on a finite setting.

kerfdr Semi-parametric kernel-based approach to local fdr estimations.

kernelPop Spatially explicit population genetic simulations.

kernlab Kernel-based machine learning methods including support vector machines.

kin.cohort Analysis of kin-cohort studies.

kinship Mixed-effects Cox models, sparse matrices, and modeling data from large pedigrees.

kknn Weighted k-nearest neighbors classification and regression.

klaR Miscellaneous functions for classification and visualization developed at the Department of Statistics, University of Dortmund.

klin Linear equations with Kronecker structure.

km.ci Confidence intervals for the Kaplan-Meier estimator.

knnFinder Fast nearest neighbor search.

knnTree Construct or predict with k-nearest-neighbor classifiers, using cross-validation to select k, choose variables (by forward or backwards selection), and choose scaling (from among no scaling, scaling each column by its SD, or scaling each column by its MAD). The finished classifier will consist of a classification tree with one such k-nn classifier in each leaf.

knncat Nearest-neighbor classification with categorical variables.

knnflex A more flexible k-NN.

knorm Microarray data from multiple biologically interrelated experiments.

kohonen Supervised and unsupervised self-organising maps.

ks Kernel smoothing: bandwidth matrices for kernel density estimators and kernel discriminant analysis for bivariate data.

kza Kolmogorov-Zurbenko Adaptive filter for locating change points in a time series.

kzft Kolmogorov-Zurbenko Fourier Transform and application.

kzs Kolmogorov-Zurbenko Spline.

labdsv Laboratory for Dynamic Synthetic Vegetophenomenology.

lancet.iraqmortality Surveys of Iraq mortality published in The Lancet.

lars Least Angle Regression, Lasso and Forward Stagewise: efficient procedures for fitting an entire lasso sequence with the cost of a single least squares fit.

laser Likelihood Analysis of Speciation/Extinction Rates from phylogenies.

lasso2 Routines and documentation for solving regression problems while imposing an L1 constraint on the estimates, based on the algorithm of Osborne et al. (1998).

latentnet Latent position and cluster models for statistical networks.

latentnetHRT Latent position and cluster models for statistical networks, implementing the original specification by Handcock, Raftery and Tantrum.

lattice Lattice graphics, an implementation of Trellis Graphics functions. Recommended.

latticeExtra Generic functions and standard methods for Trellis-based displays.

lawstat Statistical tests widely utilized in biostatistics, public policy and law.

lazy Lazy learning for local regression.

ldDesign Design of experiments for detection of linkage disequilibrium.

ldbounds Lan-DeMets method for group sequential boundaries.

leaps A package which performs an exhaustive search for the best subsets of a given set of potential regressors, using a branch-and-bound algorithm, and also performs searches using a number of less time-consuming techniques.

lga Tools for Linear Grouping Analysis (LGA).

lgtdl A set of methods for longitudinal data objects.

lhs Latin Hypercube Samples.

linprog Solve linear programming/linear optimization problems by using the simplex algorithm.

ljr Logistic Joinpoint Regression.

lme4 Fit linear and generalized linear mixed-effects models.

lmeSplines Fit smoothing spline terms in Gaussian linear and nonlinear mixed-effects models.

lmm Linear mixed models.

lmomco L-moments and L-comoments.

lnMLE Marginally specified logistic normal models for longitudinal binary data.
locfdr Computation of local false discovery rates.
locfit Local Regression, likelihood and density estimation.
locpol Kernel local polynomial regression.
lodplot Assorted plots of location score versus genetic map position.
logcondens Estimate a log-concave probability density from i.i.d. observations.
logilasso Analysis of sparse contingency tables with penalization approaches.
logistf Firth’s bias reduced logistic regression approach with penalized profile likelihood based confidence intervals for parameter estimates.
logspline Logspline density estimation.
lokern Kernel regression smoothing with adaptive local or global plug-in bandwidth selection.
lpSolve Functions that solve general linear/integer problems, assignment problems, and transportation problems via interfacing Lp.solve.
lpridge Local polynomial (ridge) regression.
lsa Latent Semantic Analysis.
lspls LS-PLS (least squares — partial least squares) models.
ls Accelerated failure time model to right censored data based on least-squares principle.
ltm Analysis of multivariate Bernoulli data using latent trait models (including the Rasch model) under the Item Response Theory approach.
ltsa Linear Time Series Analysis.
lua Likelihood Under Covariate Assumptions (LUCA).
lvplot Letter-value box plots.
mAr Estimation of multivariate AR models through a computationally efficient step-wise least-squares algorithm.
mFilter Miscellaneous time series filters.
maanova Analysis of N-dye Micro Array experiments using mixed model effect. Contains analysis of variance, permutation and bootstrap, cluster and consensus tree.
magic A variety of methods for creating magic squares of any order greater than 2, and various magic hypercubes.
mapLD Linkage Disequilibrium mapping.
mapdata Supplement to package maps, providing the larger and/or higher-resolution databases.

mapproj Map Projections: converts latitude/longitude into projected coordinates.

maps Draw geographical maps. Projection code and larger maps are in separate packages.

maptools Set of tools for manipulating and reading geographic data, in particular ESRI shapefiles.

maptree Functions with example data for graphing and mapping models from hierarchical clustering and classification and regression trees.

marginTree Margin trees for high-dimensional classification.

mathgraph Tools for constructing and manipulating objects from a class of directed and undirected graphs.

matlab Emulate MATLAB code using R.

matrixcalc Collection of functions for matrix differential calculus.

maxLik Tools for Maximum Likelihood Estimation.

maxstat Maximally selected rank and Gauss statistics with several p-value approximations.

mblm Median-based Linear models, using Theil-Sen single or Siegel repeated medians.

mboost Gradient boosting for fitting generalized linear, additive and interaction models.

mclust Model-based clustering and normal mixture modeling including Bayesian regularization.

mclust02 Model-based cluster analysis: the 2002 version of MCLUST.

mcmc Functions for Markov Chain Monte Carlo (MCMC).

mda Code for mixture discriminant analysis (MDA), flexible discriminant analysis (FDA), penalized discriminant analysis (PDA), multivariate additive regression splines (MARS), adaptive back-fitting splines (BRUTO), and penalized regression.

meboot Maximum entropy bootstrap for time series.

mefa Faunistic count data handling and reporting.

meifly Interactive model exploration using GGobi.

memisc Miscellaneous Tools for data management, simulation, and presentation of estimates.

merror Accuracy and precision of measurements.
Chapter 5: R Add-On Packages

meta
Fixed and random effects meta-analysis, with functions for tests of bias, forest and funnel plot.

mfp
Multiple Fractional Polynomials.

mgcv
Routines for GAMs and other generalized ridge regression problems with multiple smoothing parameter selection by GCV or UBRE. *Recommended.*

micEcon
Tools for microeconomic analysis and microeconomic modelling.

mice
Multivariate Imputation by Chained Equations.

mimR
An R interface to MIM for graphical modeling in R.

minet
Mutual Information NETwork.

minpack.lm
R interface for two functions from the MINPACK least squares optimization library, solving the nonlinear least squares problem by a modification of the Levenberg-Marquardt algorithm.

misc3d
A collection of miscellaneous 3d plots, including rgl-based isosurfaces.

mitools
Tools to perform analyses and combine results from multiple-imputation datasets.

mix
Estimation/multiple imputation programs for mixed categorical and continuous data.

mixPHM
Mixtures of proportional hazard models.

mixreg
Functions to fit mixtures of regressions.

mixstock
Mixed stock analysis functions.

mixtools
Tools for mixture models.

mlCopulaSelection
Copula selection and fitting using maximum likelihood.

mlbench
A collection of artificial and real-world machine learning benchmark problems, including the Boston housing data.

mlegp
Maximum Likelihood Estimates of Gaussian Processes.

mlica
Independent Component Analysis using Maximum Likelihood.

mlmRev
Examples from Multilevel Modelling Software Review.

mlmmm
Maximum likelihood estimation under multivariate linear mixed models with missing values.

mmlcr
Mixed-mode latent class regression (also known as mixed-mode mixture model regression or mixed-mode mixture regression models) which can handle both longitudinal and one-time responses.

mnormt
The multivariate normal and t distributions.

moc
Fits a variety of mixtures models for multivariate observations with user-defined distributions and curves.
modeest Mode estimation and Chernoff distribution.
modehunt Multiscale analysis for density functions.
modeltools A collection of tools to deal with statistical models.
moduleColor Methods for color labeling, calculation of eigengenes, and merging of closely related modules.
mokken Mokken Scale Analysis for test and questionnaire data.
mombf Moment and inverse moment Bayes factors.
moments Moments, skewness, kurtosis and related tests.
monomvn Estimation for multivariate normal data with monotone missingness.
monreg Estimation of monotone regression and variance functions in nonparametric models.
monoProc Strictly monotone smoothing procedure.
omesun Basic astronomical calculations.
mota Mean Optimal Transformation Approach.
mprobit Multivariate probit model for binary/ordinal response.
mra Analysis of capture-recapture data.
mratios Inferences for ratios of coefficients in the general linear model.
msm Functions for fitting continuous-time Markov multi-state models to categorical processes observed at arbitrary times, optionally with misclassified responses, and covariates on transition or misclassification rates.
mus2RC S-plus to R Compatibility for package muStat.
muStat Prentice rank sum test and McNemar test.
muhaz Hazard function estimation in survival analysis.
multcomp Multiple comparison procedures for the one-way layout.
multcompView Visualizations of paired comparisons.
multic Quantitative linkage analysis tools using the variance components approach.
multilevel Analysis of multilevel data by organizational and social psychologists.
multinomRob Overdispersed multinomial regression using robust (LQD and tanh) estimation.
multitest Resampling-based multiple hypothesis testing.
mvbutils Utilities by Mark V. Bravington for project organization, editing and backup, sourcing, documentation (formal and informal), package preparation, macro functions, and more.

mvna Nelson-Aalen estimator of the cumulative hazard in multistate models.

mvnmle ML estimation for multivariate normal data with missing values.

mvnormtest Generalization of the Shapiro-Wilk test for multivariate variables.

mvoutlier Multivariate outlier detection based on robust estimates of location and covariance structure.

mvpart Multivariate partitioning.

mvtnorm Multivariate normal and t distributions.

nFDR Nonparametric Estimate of FDR Based on Bernstein polynomials.

nFactors Non-graphical solution to the Cattell Scree Test.

ncdf Interface to Unidata netCDF data files.

ncf Spatial nonparametric covariance functions.

ncomplete Functions to perform the regression depth method (RDM) to binary regression to approximate the minimum number of observations that can be removed such that the reduced data set has complete separation.

ncvar High-level R interface to netCDF datasets.

negenes Estimating the number of essential genes in a genome on the basis of data from a random transposon mutagenesis experiment, through the use of a Gibbs sampler.

netmodels Tools for the study of scale free and small world networks.

network Tools to create and modify network objects, which can represent a range of relational data types.

networksis Simulate bipartite graphs with fixed marginals through sequential importance sampling.

neural RBF and MLP neural networks with graphical user interface.

neuralnet Training of neural networks.

nice Get or set UNIX priority (niceness) of running R process.

nlme Fit and compare Gaussian linear and nonlinear mixed-effects models. Recommended.

nlmeODE Combine the nlme and odesolve packages for mixed-effects modelling using differential equations.

nlrwr Non-linear regression with R.
nls2 Non-linear regression with brute force.
nlstools Tools for nonlinear regression diagnostics.
nlt A nondecimated lifting transform for signal denoising.
nlts (Non)linear time series analysis.
nltm NonLinear Transformation Models for survival analysis.
nmnl The Lawson-Hanson NNLS algorithm for non-negative least squares.
nonbinROC ROC-type analysis for non-binary gold standards.
nor1mix One-dimensional normal mixture models classes, for, e.g., density estimation or clustering algorithms research and teaching; providing the widely used Marron-Wand densities.
norm Analysis of multivariate normal datasets with missing values.
normwm.test Normality and white noise testing.
normalp A collection of utilities for normal of order p distributions (General Error Distributions).
norstat Five omnibus tests for the composite hypothesis of normality.
overlap Functions to perform the regression depth method (RDM) to binary regression to approximate the amount of overlap, i.e., the minimal number of observations that need to be removed such that the reduced data set has no longer overlap.
np Nonparametric kernel smoothing methods for mixed datatypes.
npde Normalized prediction distribution errors for nonlinear mixed-effect models.
nplplot Plotting non-parametric LOD scores from multiple input files.
npmc Nonparametric Multiple Comparisons: provides simultaneous rank test procedures for the one-way layout without presuming a certain distribution.
nsRFA Non-supervised Regional Frequency Analysis.
numDeriv Accurate numerical derivatives.
nws Functions for NetWorkSpaces and Sleigh.
obsSens Sensitivity analysis for observational studies.
oc Optimal Classification roll call analysis.
oce Analysis of oceanographic data.
odesolve An interface for the Ordinary Differential Equation (ODE) solver lsoda. ODEs are expressed as R functions.
odfWeave Sweave processing of Open Document Format (ODF) files.
ofw Optimal Feature Weighting algorithm.
onion A collection of routines to manipulate and visualize quaternions and octonions.

openNLPmodels
 English and spanish models for openNLP.
optmatch Functions to perform optimal matching, particularly full matching.
orientlib Representations, conversions and display of orientation SO(3) data.
ouch Ornstein-Uhlenbeck models for phylogenetic comparative hypotheses.
outliers A collection of some tests commonly used for identifying outliers.
oz Functions for plotting Australia’s coastline and state boundaries.
pARtial (Partial) attributable risk estimates, corresponding variance estimates and confidence intervals.

pairwiseCI Calculate and plot unadjusted confidence intervals for two sample comparisons.
paleoTS Modeling evolution in paleontological time-series.
paleoTSalt Modeling evolution in paleontological time-series (alternate parameterization).
pamr Pam: Prediction Analysis for Microarrays.
pam Multiple imputation for multivariate panel or clustered data.
panel Functions and datasets for fitting models to Panel data.
papply Parallel apply function using MPI.
paran Horn’s test of principal components/factors.
partitions Additive partitions of integers.
partsm Periodic AutoRegressive Time Series Models.
party Unbiased recursive partitioning in a conditional inference framework.
pastecs Package for Analysis of Space-Time Ecological Series.
pbatR Frontend to PBAT to run within R.
pcaPP Robust PCA by Projection Pursuit.
palg Standard and robust estimation of the skeleton (ugraph) of a Directed Acyclic Graph (DAG) via the PC algorithm.
pcse Panel-Corrected Standard Error estimation.
pcurve Fits a principal curve to a numeric multivariate dataset in arbitrary dimensions. Produces diagnostic plots. Also calculates Bray-Curtis and other distance matrices and performs multi-dimensional scaling and principal component analyses.
pear Periodic Autoregression Analysis.
penalized Penalized estimation in generalized linear models.
permax Functions intended to facilitate certain basic analyses of DNA array data, especially with regard to comparing expression levels between two types of tissue.
permtest Permutation test to compare variability within and distance between two groups.
perturb Perturbation analysis for evaluating collinearity.
pgam Poisson-Gamma Additive Models.
pgirmess Functions for analysis and display of ecological and spatial data.
phangorn Phylogenetic analysis in R.
pheno Some easy-to-use functions for time series analyses of (plant-) phenological data sets.
phpSerialize Serialize R to PHP associative array.
pinktoe Converts S trees to HTML/Perl files for interactive tree traversal.
pixmap Functions for import, export, plotting and other manipulations of bitmapped images.
plRasch Log linear by linear association models.
playwith A GUI for interactive plots using GTK+.
plink Separate calibration linking methods.
plm Linear models for panel data.
plotAndPlayGTK A GUI for interactive plots using GTK.
plotSEMM Graphing nonlinear latent variable interactions in SEMM.
plotrix Various useful functions for enhancing plots.
plugdensity Kernel density estimation with global bandwidth selection via “plug-in”.
pls Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR).
plsgenomics PLS analyses for genomics.
pmg Poor Man’s GUI.
pmml Generate Predictive Modelling Markup Language (PMML) for various models.
polca POlytomous variable Latent Class Analysis.
poilog Poisson lognormal and bivariate Poisson lognormal distribution.
polspline Routines for the polynomial spline fitting routines hazard regression, hazard estimation with flexible tails, logspline, lspec, polyclas, and polymars, by C. Kooperberg and co-authors.
polyapost Simulating from the Polya posterior.
polycor Polychoric and polyserial correlations.
polynom A collection of functions to implement a class for univariate polynomial manipulations.
pomp Partially-observed Markov processes.
opbio Construction and analysis of matrix population models.
opgen Statistical and POPulation GENetices.
oplab Population Lab, a tool for constructing a virtual electronic population evolving over time.
portfolio Classes for analyzing and implementing portfolios.
portfolioSim Framework for simulating equity portfolio strategies.
powell Optimizes a function using Powell’s UObyQA algorithm.
powerpkg Power analyses for the affected sib pair and the TDT design.
ppc Sample classification of protein mass spectra by peak probabilty contrasts.
ppls Penalized Partial Least Squares.
pps Functions to select samples using PPS (probability proportional to size) sampling, for stratified simple random sampling, and to compute joint inclusion probabilities for Sampford’s method of PPS sampling.
prabclus Distance based parametric bootstrap tests for clustering, mainly thought for presence-absence data (clustering of species distribution maps). Jaccard and Kulczynski distance measures, clustering of MDS scores, and nearest neighbor based noise detection.
predbayescor Classification rule based on Bayesian naive Bayes models with feature selection bias corrected.
predmixcor Classification rule based on Bayesian mixture models with feature selection bias corrected.
prettyR Pretty descriptive stats.
<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prim</td>
<td>Patient Rule Induction Method (PRIM).</td>
</tr>
<tr>
<td>princurve</td>
<td>Fits a principal curve to a matrix of points in arbitrary dimension.</td>
</tr>
<tr>
<td>prob</td>
<td>Elementary probability on finite sample spaces.</td>
</tr>
<tr>
<td>profileModel</td>
<td>Tools for profiling inference functions for various model classes.</td>
</tr>
<tr>
<td>profTools</td>
<td>Profile output processing tools for R.</td>
</tr>
<tr>
<td>proj4</td>
<td>A simple interface to the PROJ.4 cartographic projections library.</td>
</tr>
<tr>
<td>proptest</td>
<td>Tests of the proportional hazards assumption in the Cox model.</td>
</tr>
<tr>
<td>proto</td>
<td>An object oriented system using prototype or object-based (rather than class-based) object oriented ideas.</td>
</tr>
<tr>
<td>proxy</td>
<td>Distance and similarity measures.</td>
</tr>
<tr>
<td>pscl</td>
<td>R in the Political Science Computational Laboratory, Stanford University.</td>
</tr>
<tr>
<td>pseudo</td>
<td>Pseudo-observations.</td>
</tr>
<tr>
<td>pspline</td>
<td>Smoothing splines with penalties on order (m) derivatives.</td>
</tr>
<tr>
<td>psy</td>
<td>Various procedures used in psychometry: Kappa, ICC, Cronbach alpha, screeplot, PCA and related methods.</td>
</tr>
<tr>
<td>psych</td>
<td>Procedures for personality and psychological research.</td>
</tr>
<tr>
<td>psychometric</td>
<td>Applied psychometric theory: functions useful for correlation theory, meta-analysis (validity-generalization), reliability, item analysis, inter-rater reliability, and classical utility.</td>
</tr>
<tr>
<td>psyphy</td>
<td>Functions for analyzing psychophysical data in R.</td>
</tr>
<tr>
<td>pwr</td>
<td>Basic functions for power analysis.</td>
</tr>
<tr>
<td>pwt</td>
<td>The Penn World Table providing purchasing power parity and national income accounts converted to international prices for 168 countries for some or all of the years 1950–2000.</td>
</tr>
<tr>
<td>pvclust</td>
<td>Hierarchical clustering with (p)-value.</td>
</tr>
<tr>
<td>qAnalyst</td>
<td>Variables and attributes control charts.</td>
</tr>
<tr>
<td>qgen</td>
<td>Quantitative Genetics using R.</td>
</tr>
<tr>
<td>qp</td>
<td>(q)-order partial correlation graph search algorithm.</td>
</tr>
<tr>
<td>qpcR</td>
<td>Modelling and analysis of real-time PCR data.</td>
</tr>
<tr>
<td>qtl</td>
<td>Analysis of experimental crosses to identify QTLs.</td>
</tr>
<tr>
<td>qtlDesign</td>
<td>Tools for the design of QTL experiments.</td>
</tr>
</tbody>
</table>
qtlbim QTL Bayesian Interval Mapping.
quadprog For solving quadratic programming problems.
qualV Qualitative methods for the validation of models.
quantchem Quantitative chemical analysis: calibration and evaluation of results.
quantmod Quantitative financial modelling framework.
quantreg Quantile regression and related methods.
quantregForest Quantile Regression Forests, a tree-based ensemble method for estimation of conditional quantiles.
qvalue Q-value estimation for false discovery rate control.
qvcalc Functions to compute quasi-variances and associated measures of approximation error.
r2lUniv R to Univariate: perform basic analysis and generate corresponding code.
rJava Low-level R to Java interface. Allows creation of objects, calling methods and accessing fields.
race Implementation of some racing methods for the empirical selection of the best.
rake Raking survey datasets by re-weighting.
ramps Bayesian geostatistical modeling of Gaussian processes using a reparameterized and marginalized posterior sampling (RAMPS) algorithm.
randaes Random number generator based on AES cipher.
random True random numbers using random.org.
randomLCA Random effects Latent Class Analysis.
randomSurvivalForest Ishwaran and Kogalur’s random survival forest.
randomForest Breiman’s random forest classifier.
rankreg Rank regression estimator for the AFT model with right censored data.
rateratio.test Exact rate ratio test.
rattle A graphical user interface for data mining in R using GTK.
rbugs Functions to prepare files needed for running BUGS in batch mode, and running BUGS from R. Support for Linux systems with Wine is emphasized.
rcdd C Double Description for R, an interface to the CDD computational geometry library.
rcdk Interface to the CDK libraries, a Java framework for cheminformatics.

rcom R COM Client Interface and internal COM Server.

rcompgen Completion generator for R. Recommended for R 2.5.0 or 2.6.0.

rda Shrunken Centroids Regularized Discriminant Analysis.

realized Realized variance toolkit.

ref Functions for creating references, reading from and writing ro references and a memory efficient refdata type that transparently encapsulates matrices and data frames.

regress Fitting Gaussian linear models where the covariance structure is a linear combination of known matrices by maximising the residual log likelihood. Can be used for multivariate models and random effects models.

regsubseq Detect and test regular sequences and subsequences.

regtest Regression testing.

relaimpo RELAtive IMPORtance of regressors in linear models.

relations Data structures for k-ary relations with arbitrary domains, predicate functions, and fitters for consensus relations.

relax Functions for report writing, presentation, and programming.

relaxo Relaxed Lasso.

reldist Functions for the comparison of distributions, including nonparametric estimation of the relative distribution PDF and CDF and numerical summaries as described in “Relative Distribution Methods in the Social Sciences” by Mark S. Handcock and Martina Morris, 1999, Springer.

relimp Functions to facilitate inference on the relative importance of predictors in a linear or generalized linear model.

relsurv Various functions for regression in relative survival.

reshape Flexibly reshape data.

resper Sampling from restricted permutations.

reweight Adjustment of survey respondent weights.

rgcvsqpack R interface for GCVPACK Fortran package.

rgdal Provides bindings to Frank Warmerdam’s Geospatial Data Abstraction Library (GDAL).

rgenoud R version of GENetic Optimization Using Derivatives.

rrgmm Robustified methods for Gaussian Graphical Models.

rggobi Interface between R and GGobi.

rgl 3D visualization device system (OpenGL).

rgr The GSC (Geological Survey of Canada) applied geochemistry EDA package.
rhosp Side effect risks in hospital: simulation and estimation.
richards Richards curves.
rimage Functions for image processing, including Sobel filter, rank filters, fft, histogram equalization, and reading JPEG files.
rindex Indexing for R.
risksetROC Riskset ROC curve estimation from censored survival data.
riv Robust Instrumental Variables estimators based on high breakpoint point S-estimators of multivariate location and scatter matrices.
rjacobi Jacobi polynomials and Gauss-Jacobi quadrature related operations.
rjson JSON (JavaScript Object Notation) for R.
rlecuyer R interface to RNG with multiple streams.
rmeta Functions for simple fixed and random effects meta-analysis for two-sample comparison of binary outcomes.
rmetasim An interface between R and the metasim simulation engine. Facilitates the use of the metasim engine to build and run individual based population genetics simulations.
robfilter Robust time series filters.
robust Insightful robust package.
robustbase Basic Robust Statistics.
rpanel Simple interactive controls for R using the tcltk package.
rpart Recursive PARTitioning and regression trees. Recommended.
rpart.permutation Permutation tests of rpart models.
rpubchem R interface to the PubChem collection.
rpvm R interface to PVM (Parallel Virtual Machine). Provides interface to PVM APIs, and examples and documentation for its use.
rmqmcmb2 Markov chain marginal bootstrap for quantile regression.
rrcov Functions for robust location and scatter estimation and robust regression with high breakdown point.
rrp Random Recursive Partitioning.
rsprng Provides interface to SPRNG (Scalable Parallel Random Number Generators) APIs, and examples and documentation for its use.
rstream Unified object oriented interface for multiple independent streams of random numbers from different sources.
rtiff
Read TIFF format images and return them as pixmap objects.

rv
Simulation-based random variable object class.

rwt
Rice Wavelet Toolbox wrapper, providing a set of functions for performing digital signal processing.

s20x
Stats 20x functions.

sac
Semiparametric empirical likelihood ratio based test of changepoint with one-change or epidemic alternatives with data-based model diagnostic.

sampling
Implements a modified version of the Sampford sampling algorithm. Given a quantity assigned to each unit in the population, samples are drawn with probability proportional to the product of the quantities of the units included in the sample.

sampleSelection
Estimation of sample selection models.

sampling
A set of tools to select and to calibrate samples.

samr
Significance Analysis of Microarrays.

sandwich
Model-robust standard error estimators for time series and longitudinal data.

sapa
Insightful Spectral Analysis for Physical Applications.

sbgcop
Semiparametric Bayesian Gaussian copula estimation.

sca
Simple Component Analysis.

scagnostics
Compute scagnostics.

scaleboot
Approximately unbiased p-values via multiscale bootstrap.

scape
functions to import and plot results from statistical catch-at-age models, used in fisheries stock assessments.

scapeMCMC
Markov-chain Monte Carlo diagnostic plots, accompanying the scape package.

scatterplot3d
Plots a three dimensional (3D) point cloud perspective.

schoolmath
Functions and datasets for math used in school.

sciplot
Scientific graphing functions for factorial designs.

scope
Data manipulation using arbitrary row and column criteria.

scrim
Tools for the analysis of high-dimensional data developed/implemented at the group “Statistical Complexity Reduction In Molecular Epidemiology” (SCRIME), with main focus on SNP data.

scuba
Scuba diving calculations and decompression models.
sdcMicro Statistical Disclosure Control methods for the generation of public and scientific use files.

sde Simulation and inference for Stochastic Differential Equations.

seacarb Calculates parameters of the seawater carbonate system.

seas Detailed seasonal plots of temperature and precipitation data.

seewave Time wave analysis and graphical representation.

segclust Segmentation and segmentation/clustering.

segmented Functions to estimate break-points of segmented relationships in regression models (GLMs).

sem Functions for fitting general linear Structural Equation Models (with observed and unobserved variables) by the method of maximum likelihood using the RAM approach.

sendplot Tool for sending interactive plots.

sensitivity Sensitivity analysis.

seqinr Exploratory data analysis and data visualization for biological sequence (DNA and protein) data.

seqmon Sequential monitoring of clinical trials.

seriation Infrastructure for seriation.

session Functions for interacting with, saving and restoring R sessions.

setRNG Set (normal) random number generator and seed.

sets Data structures and basic operations for ordinary sets, and generalizations such as fuzzy sets, multisets, and fuzzy multisets.

sfsmisc Utilities from Seminar fuer Statistik ETH Zurich.

sgeostat An object-oriented framework for geostatistical modeling.

shape Functions for plotting graphical shapes.

shapefiles Functions to read and write ESRI shapefiles.

shapes Routines for the statistical analysis of shapes, including procrustes analysis, displaying shapes and principal components, testing for mean shape difference, thin-plate spline transformation grids and edge superimposition methods.

siar Stable Isotope Analysis in R.

sigma2tools Test of hypothesis about sigma2.

signal A set of generally Matlab/Octave-compatible signal processing functions.

signalextraction Real-time signal extraction (Direct Filter Approach).

simba Functions for similarity calculation of binary data.
simco Import Structure files and deduce similarity coefficients from them.
simecol SIMulation of ECOLogical (and other) dynamic systems.
simex SIMEX and MCSIMEX algorithms for measurement error models.
similarity Richards
Similarity of Richards curves.
simpleboot Simple bootstrap routines.
skewt Density, distribution function, quantile function and random generation for the skewed t distribution of Fernandez and Steel.
sma Functions for exploratory (statistical) microarray analysis.
smstr (Standardized) Major Axis estimation and Testing Routines.
smoothSurv Survival regression with smoothed error distribution.
smoothtail Smooth estimation of generalized Pareto distribution shape parameter.
sm Functions for manipulating skew-normal probability distributions and for fitting them to data, in the scalar and the multivariate case.
sna A range of tools for social network analysis, including node and graph-level indices, structural distance and covariance methods, structural equivalence detection, p* modeling, and network visualization.
snow Simple Network of Workstations: support for simple parallel computing in R.
snowFT Fault Tolerant Simple Network of Workstations.
snp.plotter Plots of p-values using single SNP and/or haplotype data.
snpXpert Tools to analyze SNP data.
som Self-Organizing Maps (with application in gene clustering).
sound A sound interface for R: Basic functions for dealing with `.wav` files and sound samples.
sp A package that provides classes and methods for spatial data, including utility functions for plotting data as maps, spatial selection, and much more.
spBayes Fit Gaussian models with potentially complex hierarchical error structures by Markov chain Monte Carlo (MCMC).
space Sparse PArtial Correlation Estimation.
spam SPArse Matrix algebra.
spatclus Arbitrarily shaped multiple spatial cluster detection for case event data.
spatgraphs
Graphs for 2-d point patterns.

spatial

spatialCovariance
Computation of spatial covariance matrices for data on rectangles using one dimensional numerical integration and analytic results.

spatialkernel
Nonparametric estimation of spatial segregation in a multivariate point process.

spatstat
Data analysis and modelling of two-dimensional point patterns, including multitype points and spatial covariates.

spc Statistical Process Control: evaluation of control charts by means of the zero-state, steady-state ARL (Average Run Length), setting up control charts for given in-control ARL, and plotting of the related figures.

spde A collection of functions to create spatial weights matrix objects from polygon contiguities, from point patterns by distance and tessellations, for summarising these objects, and for permitting their use in spatial data analysis; a collection of tests for spatial autocorrelation, including global Moran’s I and Geary’s C, local Moran’s I, saddlepoint approximations for global and local Moran’s I; and functions for estimating spatial simultaneous autoregressive (SAR) models. (Was formerly the three packages: spweights, sptests, and spsarlm.)

spe Stochastic Proximity Embedding.

spectralGP Approximate Gaussian processes using the Fourier basis.

spectrino Spectra organizer, visualization and data extraction from within R.

spgrass6 Interface between the GRASS 6.0 geographical information system and R.

spgwr Geographically weighted regression.

splancs Spatial and space-time point pattern analysis functions.

plus2R Insightful package providing missing S-PLUS functionality in R.

spsurvey Spatial survey design and analysis.

sqlid Perform sql selects on R data frames.

ssauv Sample Size Adjusted for Nonadherence or Variability of input parameters.

sspir State SPace models In R.

sspline Smoothing splines on the sphere.

st Shrinkage t statistic.

staRt Inferenza classica con TI-83 Plus.
startupmsg
Utilities for start-up messages.

stashR
A Set of Tools for Administering SHared Repositories.

statmod
Miscellaneous biostatistical modelling functions.

statnet
Software tools for the statistical modeling of network data.

stepPlr
L2 penalized logistic regression with a stepwise variable selection.

stepwise
A stepwise approach to identifying recombination breakpoints in a sequence alignment.

stinepack
Stineman interpolation package.

stochasticGEM
Fitting Stochastic General Epidemic Models.

stochmod
Learning and inference algorithms for a variety of probabilistic models.

stream.net
Building and analyzing binary stream networks.

strucchange
Various tests on structural change in linear regression models.

subplex
The subplex algorithm for unconstrained optimization.

subselect
A collection of functions which assess the quality of variable subsets as surrogates for a full data set, and search for subsets which are optimal under various criteria.

sudoku
Sudoku puzzle solver.

supclust
Methodology for supervised grouping of predictor variables.

superpc
Supervised principal components.

surv2sample
Two-sample tests for survival analysis.

survBayes
Fits a proportional hazards model to time to event data by a Bayesian approach.

surveillance
Outbreak detection algorithms for surveillance data.

survey
Summary statistics, generalized linear models, and general maximum likelihood estimation for stratified, cluster-sampled, unequally weighted survey samples.

surveyNG
Complex survey samples: database interface, sparse matrices.

survival
Functions for survival analysis, including penalised likelihood. Recommended.

survivalROC
Time-dependent ROC curve estimation from censored survival data.

survrec
Survival analysis for recurrent event data.

svcR
A support vector machine technique for clustering.
svcm 2d and 3d Space-Varying Coefficient Models.
svmpath Computes the entire regularization path for the two-class svm classifier with essentially the same cost as a single SVM fit.
systemfit Contains functions for fitting simultaneous systems of equations using Ordinary Least Squares (OLS), Two-Stage Least Squares (2SLS), and Three-Stage Least Squares (3SLS).
tcltk2 A series of widgets and functions to supplement tcltk.
tdist Computes the distribution of a linear combination of independent Student’s t variables.
tdm A tool for Therapeutic Drug Monitoring.
tdthap Transmission/disequilibrium tests for extended marker haplotypes.
tensor Tensor product of arrays.
tensorA Advanced tensors arithmetic with named indices.
termstrc Term structure and credit spread estimation.
tframe Time Frame coding kernel: functions for writing code that is independent of the way time is represented.
tgp Bayesian regression and adaptive sampling with Treed Gaussian Process models.
time Time tracking for developers.
timsac TIMe Series Analysis and Control package.
titan Titration analysis for mass spectrometry data.
titecrm TIme-To-Event Continual Reassessment Method and calibration tools.
tkrgl TK widget tools for rgl package.
tkrplot Simple mechanism for placing R graphics in a Tk widget.
tlnise Two-level normal independent sampling estimation.
tm A framework for text mining applications within R.
torus Torus algorithm for quasi random number generation.
tpr Temporal Process Regression.
trackObjs Track objects.
tradeCosts Post-trade analysis of transaction costs.
tree Classification and regression trees.
treeglia Stem analysis functions for volume increment and carbon uptake assessment from tree-rings.
triangle Standard distribution functions for the triangle distribution.
trimcluster
Cluster analysis with trimming.

trip
Spatial analysis of animal track data.

tripEstimation
Metropolis sampler and supporting functions for estimating animal movement from archival tags and satellite fixes.

tripack
A constrained two-dimensional Delaunay triangulation package.

truncgof
Goodness-of-fit tests allowing for left truncated data.

trust
Local optimization using two derivatives and trust regions.

tsDyn
Time series analysis based on dynamical systems theory.

tseries
Package for time series analysis with emphasis on non-linear modelling.

tseriesChaos
Routines for the analysis of non-linear time series.

tsfa
Time Series Factor Analysis.

tuneR
Collection of tools to analyze music, handle wave files, transcription, etc.

tutoR
Student-friendly package to mask common functions.

twang
Toolkit for Weighting and Analysis of Nonequivalent Groups.

tweedie
Maximum likelihood computations for Tweedie exponential family models.

twslm
A two-way semilinear model for normalization and analysis of cDNA microarray data.

udunits
Interface to Unidata’s routines to convert units.

ump
Uniformly Most Powerful tests.

unbalhaar
Function estimation via Unbalanced Haar wavelets.

untb
Ecological drift under the UNTB (Unified Neutral Theory of Biodiversity).

urca
Unit root and cointegration tests for time series data.

urn
Functions for sampling without replacement (simulated urns).

uroot
Unit root tests and graphics for seasonal time series.

vabayelMix
Variational Bayesian mixture model.

varSelRF
Variable selection using random forests.

vardiag
Interactive variogram diagnostics.

varmixt
Mixture model on the variance for the analysis of gene expression data.

vars
VAR modeling.

vbmp
Variational Bayesian Multinomial Probit Regression.
vcd Functions and data sets based on the book “Visualizing Categorical Data” by Michael Friendly.

vegan Various help functions for vegetation scientists and community ecologists.

verification Utilities for verification of discrete and probabilistic forecasts.

verify Construction of test suites using verify objects.

vioplot Violin plots, which are a combination of a box plot and a kernel density plot.

vrtest Variance ratio tests for weak-form market efficiency.

waved WaveD transform in R.

wavelets Functions for computing wavelet filters, wavelet transforms and multiresolution analyses.

waveslim Basic wavelet routines for time series analysis.

wavethresh Software to perform 1-d and 2-d wavelet statistics and transforms.

wccsom SOM networks for comparing patterns with peak shifts.

wikibooks Functions and datasets for the German WikiBook “GNU R”.

wle Robust statistical inference via a weighted likelihood approach.

wmtsa Insightful Wavelet Methods for Time Series Analysis.

wnominate WNOMINATE roll call analysis software.

wombat Computation.

wordnet WordNet interface.

write.snns Function for exporting data to SNNS (Stuttgart Neural Network Simulator) pattern files.

xgobi Interface to the XGobi and XGvis programs for graphical data analysis.

xlsReadWrite Natively read and write Excel files.

xtable Export data to and HTML tables.

xts Extensible time series.

yaImpute Performs popular nearest neighbor routines.

yaml Methods to convert R to YAML and back.

yest Gaussian independence models.

zicounts Fit classical, zero-inflated and interval censored count data regression models.

zipfR Statistical models for word frequency distributions.

zoeppritz Zoeppritz equations: calculate and plot scattering coefficients of seismic waves when they interact at an interface between two layers.
zoo A class with methods for totally ordered indexed observations such as irregular time series.

See CRAN ‘src/contrib/PACKAGES’ for more information.

There used to be a CRAN ‘src/contrib/Devel’ directory with packages still “under development” or depending on features only present in the current development versions of R. This area is no longer provided, with packages formerly in this area either in the regular package area or the archive ‘src/contrib/Archive’.

5.1.3 Add-on packages from Omegahat

The http://www.omegahat.org/, Omegahat Project for Statistical Computing provides a variety of open-source software for statistical applications, with special emphasis on web-based software, Java, the Java virtual machine, and distributed computing. A CRAN style R package repository is available via http://www.omegahat.org/R/.

Currently, there are the following packages.

Aspell An interface to facilities in the aspell library.
CGIwithR Facilities for the use of R to write CGI scripts.
CORBA Dynamic CORBA client/server facilities for R. Connects to other CORBA-aware applications developed in arbitrary languages, on different machines and allows R functionality to be exported in the same way to other applications.

Combinations
Compute the combinations of choosing \(r \) items from \(n \) elements.

IDocs Infrastructure for interactive documents.
OOP OOP style classes and methods for R and S-PLUS. Object references and class-based method definition are supported in the style of languages such as Java and C++.

RCurl Allows one to compose HTTP requests to fetch URIs, post forms, etc., and process the results returned by the Web server.
RDCOMClient Provides dynamic client-side access to (D)COM applications from within R.
RDCOMEEvents Provides facilities to use R functions and objects as handlers for DCOM events.
RDCOMServer Facilities for exporting S objects and functions as COM objects.
REmbeddedPostgres Allows R functions and objects to be used to implement SQL functions — per-record, aggregate and trigger functions.
REventLoop An abstract event loop mechanism that is toolkit independent and can be used to to replace the R event loop.
Rexif
 Extract meta-information from JPEG files.

RGdkPixbuf
 S language functions to access the facilities in the GdkPixbuf library for manipulating images.

RGnumeric
 A plugin for the Gnumeric spreadsheet that allows R functions to be called from cells within the sheet, automatic recalculation, etc.

RGtk
 Facilities in the S language for programming graphical interfaces using Gtk, the Gnome GUI toolkit.

RGtkBindingGenerator
 A meta-package which generates C and R code to provide bindings to a Gtk-based library.

RGtkExtra
 A collection of S functions that provide an interface to the widgets in the gtk+extra library such as the GtkSheet data-grid display, icon list, file list and directory tree.

RGtkGlade
 S language bindings providing an interface to Glade, the interactive Gnome GUI creator.

RGtkHTML
 A collection of S functions that provide an interface to creating and controlling an HTML widget which can be used to display HTML documents from files or content generated dynamically in S.

RGtkIPrimitives
 A collection of low-level primitives for interactive use with R graphics and the gtkDevice using RGtk.

RGtkViewers
 A collection of tools for viewing different S objects, databases, class and widget hierarchies, S source file contents, etc.

RJavaDevice
 A graphics device for R that uses Java components and graphics. APIs.

RMatlab
 A bi-directional interface between R and Matlab.

RObjectTables
 The C and S code allows one to define R objects to be used as elements of the search path with their own semantics and facilities for reading and writing variables. The objects implement a simple interface via R functions (either methods or closures) and can access external data, e.g., in other applications, languages, formats, . . .

RSMethods
 An implementation of S version 4 methods and classes for R, consistent with the basic material in “Programming with Data” by John M. Chambers, 1998, Springer NY.
RSPerl An interface from R to an embedded, persistent Perl interpreter, allowing one to call arbitrary Perl subroutines, classes and methods.

RSPython Allows Python programs to invoke S functions, methods, etc., and S code to call Python functionality.

RXLisp An interface to call XLisp-Stat functions from within R.

Rcompression In-memory decompression for GNU zip and bzip2 formats.

Rlibstree Suffix Trees in R via the libstree C library.

Rstem Interface to Snowball implementation of Porter’s word stemming algorithm.

RwxWidgets Facilities to program GUIs using wxWidgets in R.

Ryacas R interface to yacas.

SASXML Example for reading XML files in SAS 8.2 manner.

SJava An interface from R to Java to create and call Java objects and methods.

SLanguage Functions and C support utilities to support S language programming that can work in both R and S-PLUS.

SNetscape Plugin for Netscape and JavaScript.

SSOAP A client interface to SOAP (Simple Object Access Protocol) servers from within S.

SWinRegistry Provides access from within R to read and write the Windows registry.

SWinTypeLibs Provides ways to extract type information from type libraries and/or DCOM objects that describes the methods, properties, etc., of an interface.

SXalan Process XML documents using XSL functions implemented in R and dynamically substituting output from R.

Slcc Parses C source code, allowing one to analyze and automatically generate interfaces from S to that code, including the table of S-accessible native symbols, parameter count and type information, S constructors from C objects, call graphs, etc.

Sxsllt An extension module for libxsllt, the XML-XSL document translator, that allows XSL functions to be implemented via R functions.

XML Tools for reading XML documents and DTDs.
5.1.4 Add-on packages from Bioconductor

The http://www.bioconductor.org/, Bioconductor Project produces an open source software framework that will assist biologists and statisticians working in bioinformatics, with primary emphasis on inference using DNA microarrays. A CRAN style R package repository is available via http://www.bioconductor.org/.

The following R packages are contained in the current release of Bioconductor, with more packages under development.

- **ABarray**
 Microarray QA and statistical data analysis for Applied Biosystems Genome Survey Micorarray (AB1700) gene expression data.

- **ACME**
 Algorithms for Calculating Microarray Enrichment (ACME).

- **AffyExpress**
 Affymetrix quality assessment and analysis tool.

- **AnnBuilder**
 Processing annotation date from public data repositories and building annotation data packages or XML data documents using the source data.

- **AnnotationDbi**
 Annotation DataBase Interface.

- **BSgenome**
 Infrastructure for Biostrings-based genome data packages.

- **BeadExplorer**
 QC, normalization, annotation and exploration of Illumina BeadChip data.

- **BioMVCClass**
 Model-View-Controller (MVC) classes that use Biobase.

- **Biobase**
 Object-oriented representation and manipulation of genomic data (S4 class structure).

- **Biostrings**
 Class definitions and generics for biological sequences along with pattern matching algorithms.

- **BufferedMatrix**
 Microarray analysis methods that use BufferedMatrix objects.

- **BufferedMatrixMethods**
 A matrix data storage object held in temporary files.

- **CALIB**
 Calibration model for estimating absolute expression levels from microarray data.

- **CGHcall**
 Calling aberrations for array CGH tumor profiles.

- **CORREP**
 Multivariate correlation estimation and statistical inference.

- **Category**
 A collection of tools for performing category analysis.

- **ChromoViz**
 Draw gene expression profile onto chromosome using SVG.
CoCiteStat
A collection of software tools for dealing with co-citation data.

DEDS
Differential Expression via Distance Summary for microarray data.

DNAcopy
Segments DNA copy number data using circular binary segmentation to detect regions with abnormal copy number.

DynDoc
Functionality to create and interact with dynamic documents, vignettes, and other navigable documents.

EBImage
Image processing and image analysis toolkit.

EBarrays
Empirical Bayes tools for the analysis of replicated microarray data across multiple conditions.

GEOquery
Get data from NCBI Gene Expression Omnibus (GEO).

GGtools
Software and data for genetical genomics.

GLAD
Gain and Loss Analysis of DNA.

GOstats
Tools for manipulating GO and microarrays.

GSEABase
Gene set enrichment data structures and methods.

GeneMeta
A collection of meta-analysis tools for analyzing high throughput experimental data.

GeneR
Package manipulating nucleotidic sequences (Embl, Fasta, GenBank).

GeneSpring
Functions and class definitions to be able to read and write GeneSpring specific data objects and convert them to Bioconductor objects.

GeneTS
A package for analysing multiple gene expression time series data. Currently, implements methods for cell cycle analysis and for inferring large sparse graphical Gaussian models.

GeneTraffic
GeneTraffic R integration functions.

GeneticsBase
Classes and functions for handling genetic data.

GeneticsDesign
Functions for designing genetics studies.

GlobalAncova
Calculates a global test for differential gene expression between groups.

GraphAT
Graph theoretic Association Tests.

HEM
Heterogeneous Error Model for analysis of microarray data.

Harshlight
A “corrective make-up” program for microarray chips.
<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heatplus</td>
<td>A heat map displaying covariates and coloring clusters.</td>
</tr>
<tr>
<td>Icens</td>
<td>Functions for computing the NPMLE for censored and truncated data.</td>
</tr>
<tr>
<td>KEGGSOAP</td>
<td>Client-side SOAP access KEGG.</td>
</tr>
<tr>
<td>LBE</td>
<td>Estimation of the false discovery rate.</td>
</tr>
<tr>
<td>LMGene</td>
<td>Analysis of microarray data using a linear model and glog data transformation.</td>
</tr>
<tr>
<td>LPE</td>
<td>Significance analysis of microarray data with small number of replicates using the Local Pooled Error (LPE) method.</td>
</tr>
<tr>
<td>MANOR</td>
<td>Micro-Array NORmalization.</td>
</tr>
<tr>
<td>MCRestimate</td>
<td>Misclassification error estimation with cross-validation.</td>
</tr>
<tr>
<td>MLInterfaces</td>
<td>Uniform interfaces to machine learning code for the exprSet class from Bioconductor.</td>
</tr>
<tr>
<td>MVCClass</td>
<td>Model-View-Controller (MVC) classes.</td>
</tr>
<tr>
<td>MantelCorr</td>
<td>Compute Mantel Cluster Correlations.</td>
</tr>
<tr>
<td>MassSpecWavelet</td>
<td>Mass spectrum processing by wavelet-based algorithms.</td>
</tr>
<tr>
<td>MeasurementError.cor</td>
<td>Two-stage measurement error model for correlation estimation with smaller bias than the usual sample correlation.</td>
</tr>
<tr>
<td>MergeMaid</td>
<td>Cross-study comparison of gene expression array data.</td>
</tr>
<tr>
<td>Mfuzz</td>
<td>Soft clustering of time series gene expression data.</td>
</tr>
<tr>
<td>MiPP</td>
<td>Misclassification Penalized Posterior Classification.</td>
</tr>
<tr>
<td>OCplus</td>
<td>Operating characteristics plus sample size and local fdr for microarray experiments.</td>
</tr>
<tr>
<td>OLIN</td>
<td>Optimized Local Intensity-dependent Normalisation of two-color microarrays.</td>
</tr>
<tr>
<td>OLINGui</td>
<td>Graphical user interface for OLIN.</td>
</tr>
<tr>
<td>OrderedList</td>
<td>Similarities of ordered gene lists.</td>
</tr>
<tr>
<td>OutlierD</td>
<td>Outlier detection using quantile regression on the M-A scatterplots of high-throughput data.</td>
</tr>
<tr>
<td>PGSEA</td>
<td>Parametric Gene Set Enrichment Analysis.</td>
</tr>
<tr>
<td>PROcess</td>
<td>Ciphergen SELDI-TOF processing.</td>
</tr>
</tbody>
</table>
RBGL | An interface between the graph package and the Boost graph libraries, allowing for fast manipulation of graph objects in R.

RLMM | A genotype calling algorithm for Affymetrix SNP arrays.

RMAGEML | Functionality to handle MAGEML documents.

RMAPPER | Interface to mapper.chip.org.

ROC | Receiver Operating Characteristic (ROC) approach for identifying genes that are differentially expressed in two types of samples.

RSNPer | Interface to chip.org::SNPper for SNP-related data.

RWebServices | Expose R functions as web services through Java/Axis/Apache.

RankProd | Rank Product method for identifying differentially expressed genes.

RbcBook1 | Support for Springer monograph on Bioconductor.

Rdbi | Generic framework for database access in R.

RdbiPgSQL | Methods for accessing data stored in PostgreSQL tables.

RefPlus | Functions for pre-processing Affymetrix data using the RMA+ and the RMA++ methods.

Resourcerer | Read annotation data from TIGR Resourcerer or convert the annotation data into Bioconductor data package.

Rgraphviz | An interface with Graphviz for plotting graph objects in R.

Ringo | R Investigation of NimbleGen Oligoarrays.

Rintact | Interface to EBI Intact protein interaction data base.

Ruuid | Creates Universally Unique ID values (UUIDs) in R.

SAGElyzer | Locates genes based on SAGE tags.

SAGx | Statistical Analysis of the GeneChip.

SBMLR | Systems Biology Markup Language (SBML) interface and biochemical system analysis tools.

SLqPCR | Functions for analysis of real-time quantitative PCR data at SIRS-Lab GmbH.

SMAP | A Segmental Maximum A Posteriori approach to array-CGH copy number profiling.

SNPchip | Classes and methods for high throughput SNP chip data.

ScISI | In Silico Interactome.
SemSim Gene ontology-based semantic similarity measures.
TypeInfo Optional type specification prototype.
VanillaICE Methods for fitting Hidden Markov Models to SNP chip data.
aCGH Classes and functions for Array Comparative Genomic Hybridization data.
adSplit Annotation-driven clustering.
affxparser Package for parsing Affymetrix files (CDF, CEL, CHP, BMAP, BAR).
affy Methods for Affymetrix Oligonucleotide Arrays.
affyPLM For fitting Probe Level Models.
affyQCREport QC Report Generation for affyBatch objects.
affycomp Graphics toolbox for assessment of Affymetrix expression measures.
affycoretools Functions useful for those doing repetitive analyses.
affyio Tools for parsing Affymetrix data files.
affylmGUI Graphical User Interface for affy analysis using package \texttt{limma}.
affypdnn Probe Dependent Nearest Neighbors (PDNN) for the \texttt{affy} package.
altcdfenvs Utilities to handle cdfenvs.
annaffy Functions for handling data from Bioconductor Affymetrix annotation data packages.
annotate Associate experimental data in real time to biological metadata from web databases such as GenBank, LocusLink and PubMed. Process and store query results. Generate HTML reports of analyses.
annotationTools Annotate microarrays and perform cross-species gene expression analyses using flat file databases.
apComplex Estimate protein complex membership using AP-MS protein data.
aroma.light Light-weight methods for normalization and visualization of microarray data using only basic R data types.
arrayMagic Utilities for quality control and processing for two-color cDNA microarray data.
arrayQuality Performing print-run and array level quality assessment.
arrayQualityMetrics Quality metrics on ExpressionSets.
beadarray Quality control and low-level analysis of BeadArrays.

beadarraySNP
Normalization and reporting of Illumina SNP bead arrays.

bgafun A method to identify specificity determining residues in protein families.

bgx Bayesian Gene eXpression.

bioDist A collection of software tools for calculating distance measures.

biocGraph Graph examples and use cases in Bioinformatics.

biocViews Categorized views of R package repositories.

biomaRt Interface to BioMart databases (e.g., Ensembl)

bridge Bayesian Robust Inference for Differential Gene Expression.

cellHTS Analysis of cell-based screens.

cellHTS2 Analysis of cell-based screens — revised version of **cellHTS**.

cghMCR Find chromosome regions showing common gains/losses.

clusterStab Compute cluster stability scores for microarray data.

codelink Manipulation of Codelink Bioarrays data.

convert Convert Microarray Data Objects.

copa Functions to perform cancer outlier profile analysis.

cosmo Supervised detection of conserved motifs in DNA sequences.

cosmoGUI GUI for constructing constraint sets used by the **cosmo** package.

ctc Tools to export and import Tree and Cluster to other programs.

daMA Functions for the efficient design of factorial two-color microarray experiments and for the statistical analysis of factorial microarray data.

diffGeneAnalysis Performs differential Gene expression Analysis.

ecolitk Metadata and tools to work with E. coli.

edd Expression density diagnostics: graphical methods and pattern recognition algorithms for distribution shape classification.

exonmap High level analysis of Affymetrix exon array data.

explorase GUI for exploratory data analysis of systems biology data.

factDesign A set of tools for analyzing data from factorial designed microarray experiments. The functions can be used to evaluate appropriate tests of contrast and perform single outlier detection.

fbat Family Based Association Tests for genetic data.
<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fdrame</td>
<td>FDR Adjustments of Microarray Experiments (FDR-AME).</td>
</tr>
<tr>
<td>flowCore</td>
<td>Basic structures for flow cytometry data.</td>
</tr>
<tr>
<td>flowUtils</td>
<td>Database interface for flow cytometry.</td>
</tr>
<tr>
<td>flowViz</td>
<td>Visualization for flow cytometry.</td>
</tr>
<tr>
<td>gaggle</td>
<td>Broadcast data between R and Java bioinformatics programs.</td>
</tr>
<tr>
<td>gcrma</td>
<td>Background adjustment using sequence information.</td>
</tr>
<tr>
<td>genArise</td>
<td>A tool for dual color microarray data.</td>
</tr>
<tr>
<td>geneRecommender</td>
<td>A gene recommender algorithm to identify genes coexpressed with a query set of genes.</td>
</tr>
<tr>
<td>genefilter</td>
<td>Tools for sequentially filtering genes using a wide variety of filtering functions. Example of filters include: number of missing value, coefficient of variation of expression measures, ANOVA p-value, Cox model p-values. Sequential application of filtering functions to genes.</td>
</tr>
<tr>
<td>geneplotter</td>
<td>Graphical tools for genomic data, for example for plotting expression data along a chromosome or producing color images of expression data matrices.</td>
</tr>
<tr>
<td>globaltest</td>
<td>Testing globally whether a group of genes is significantly related to some clinical variable of interest.</td>
</tr>
<tr>
<td>goTools</td>
<td>Functions for description/comparison of oligo ID list using the Gene Ontology database.</td>
</tr>
<tr>
<td>gpls</td>
<td>Classification using generalized partial least squares for two-group and multigroup classification.</td>
</tr>
<tr>
<td>graph</td>
<td>Classes and tools for creating and manipulating graphs within R.</td>
</tr>
<tr>
<td>hexbin</td>
<td>Binning functions, in particular hexagonal bins for graphing.</td>
</tr>
<tr>
<td>hopach</td>
<td>Hierarchical Ordered Partitioning and Collapsing Hybrid (HOPACH).</td>
</tr>
<tr>
<td>hypergraph</td>
<td>Capabilities for representing and manipulating hypergraphs.</td>
</tr>
<tr>
<td>iSNetwork</td>
<td>Interactive network plots.</td>
</tr>
<tr>
<td>iSPlot</td>
<td>Link views that are based on the same data set.</td>
</tr>
<tr>
<td>idiogram</td>
<td>Plotting genomic data by chromosomal location.</td>
</tr>
<tr>
<td>impute</td>
<td>Imputation for microarray data (currently KNN only).</td>
</tr>
<tr>
<td>keggorth</td>
<td>Graph support for KO, KEGG Orthology.</td>
</tr>
<tr>
<td>lapmix</td>
<td>Laplace mixture model in microarray experiments.</td>
</tr>
<tr>
<td>limma</td>
<td>Linear models for microarray data.</td>
</tr>
<tr>
<td>limmaGUI</td>
<td>Graphical User Interface for package limma.</td>
</tr>
</tbody>
</table>
Chapter 5: R Add-On Packages

logicFS Identification of SNP interactions.
lumi BeadArray specific methods for Illumina microarrays.
maCorrPlot Visualize artificial correlation in microarray data.
maDB Microarray database and utility functions for microarray analysis.
maSigPro Significant gene expression profile differences in time course microarray data.
maanova Tools for analyzing micro array experiments.
macat MicroArray Chromosome Analysis Tool.
made4 Multivariate analysis of microarray data using ADE4.
maigesPack Functions to handle cDNA microarray data, including several methods of data analysis.
makePlatformDesign Creates the Platform Design environments (PDenvs) required by oligo.
makecdfenv Two functions. One reads a Affymetrix chip description file (CDF) and creates a hash table environment containing the location/probe set membership mapping. The other creates a package that automatically loads that environment.
marray Exploratory analysis for two-color spotted microarray data.
matchprobes Tools for sequence matching of probes on arrays.
metaArray Integration of microarray data for meta-analysis.
multtest Multiple testing procedures for controlling the family-wise error rate (FWER) and the false discovery rate (FDR). Tests can be based on t- or F-statistics for one- and two-factor designs, and permutation procedures are available to estimate adjusted p-values.
nem Nested Effects Models to reconstruct phenotypic hierarchies.
nNorm Spatial and intensity based normalization of cDNA microarray data based on robust neural nets.
oligo Oligonucleotide arrays.
oligoClasses Classes for high-throughput SNP arrays.
oneChannelGUI Extend the capabilities of affylmGUI.
ontoTools Graphs and sparse matrices for working with ontologies; formal objects for nomenclatures with provenance management.
pamr Pam: Prediction Analysis for Microarrays.
panp Presence-Absence calls from Negative strand matching Probesets.
pathRender Render molecular pathways.
pcaMethods A collection of PCA methods.
pcot2 Principal coordinates and Hotelling’s T-square method.
pdInfoBuilder Platform design information package builder.
pdmclass CLASSification of microarray samples using Penalized Discriminant Methods.
pgUtils Utility functions for PostgreSQL databases.
pickgene Adaptive gene picking for microarray expression data analysis.
pkgDepTools Package dependency tools.
plgem Power Law Global Error Model.
plier Implements the Affymetrix PLIER (Probe Logarithmic Error Intensity Estimate) algorithm.
ppiStats Protein-Protein Interaction Statistical package.
prada Tools for analyzing and navigating data from high-throughput phenotyping experiments based on cellular assays and fluorescent detection.
preprocessCore A collection of pre-processing functions.
puma Propagating Uncertainty in Microarray Analysis.
quantsmooth Quantile smoothing and genomic visualization of array data.
qvalue Q-value estimation for false discovery rate control.
rHVDM Hidden Variable Dynamic Modeling.
rama Robust Analysis of MicroArrays: robust estimation of cDNA microarray intensities with replicates using a Bayesian hierarchical model.
rbsurv Robust likelihood-based survival modeling with microarray data.
reb Regional Expression Biases.
rflowcyt Statistical tools and data structures for analytic flow cytometry.
rsbml R support for SBML, using libsbml.
safe Significance Analysis of Function and Expression.
sagenhaft Functions for reading and comparing SAGE (Serial Analysis of Gene Expression) libraries.
seqLogo Sequence logos for DNA sequence alignments.
<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sigPathway</td>
<td>Pathway analysis.</td>
</tr>
<tr>
<td>siggenes</td>
<td>Identifying differentially expressed genes and estimating the False Discovery</td>
</tr>
<tr>
<td></td>
<td>Rate (FDR) with both the Significance Analysis of Microarrays (SAM) and the</td>
</tr>
<tr>
<td></td>
<td>Empirical Bayes Analyses of Microarrays (EBAM).</td>
</tr>
<tr>
<td>simpleaffy</td>
<td>Very simple high level analysis of Affymetrix data.</td>
</tr>
<tr>
<td>simulatorAPMS</td>
<td>Computationally simulates the AP-MS technology.</td>
</tr>
<tr>
<td>sizepower</td>
<td>Sample size and power calculation in microarray studies.</td>
</tr>
<tr>
<td>snapCGH</td>
<td>Segmentation, normalization and processing of aCGH data.</td>
</tr>
<tr>
<td>spikeLI</td>
<td>Affymetrix Spike-in Langmuir Isotherm data analysis tool.</td>
</tr>
<tr>
<td>splicegear</td>
<td>A set of tools to work with alternative splicing.</td>
</tr>
<tr>
<td>splots</td>
<td>Visualization routines for high throughput screens.</td>
</tr>
<tr>
<td>spotSegmentation</td>
<td>Microarray spot segmentation and gridding for blocks of microarray spots.</td>
</tr>
<tr>
<td>sscore</td>
<td>S-score algorithm for Affymetrix oligonucleotide microarrays.</td>
</tr>
<tr>
<td>ssize</td>
<td>Estimate microarray sample size.</td>
</tr>
<tr>
<td>stam</td>
<td>STructured Analysis of Microarray data.</td>
</tr>
<tr>
<td>stepNorm</td>
<td>Stepwise normalization functions for cDNA microarrays.</td>
</tr>
<tr>
<td>tilingArray</td>
<td>Analysis of tiling arrays.</td>
</tr>
<tr>
<td>timecourse</td>
<td>Statistical analysis for developmental microarray time course data.</td>
</tr>
<tr>
<td>tkWidgets</td>
<td>Widgets in Tcl/Tk that provide functionality for Bioconductor packages.</td>
</tr>
<tr>
<td>topGO</td>
<td>Enrichment analysis for Gene Ontology.</td>
</tr>
<tr>
<td>twilight</td>
<td>Estimation of local false discovery rate.</td>
</tr>
<tr>
<td>vbmp</td>
<td>Variational Bayesian Multinomial Probit regression.</td>
</tr>
<tr>
<td>vsn</td>
<td>Calibration and variance stabilizing transformations for both Affymetrix and</td>
</tr>
<tr>
<td></td>
<td>cDNA array data.</td>
</tr>
<tr>
<td>weaver</td>
<td>Tools and extensions for processing Sweave documents.</td>
</tr>
<tr>
<td>webbioc</td>
<td>Integrated web interface for doing microarray analysis using several of the</td>
</tr>
<tr>
<td></td>
<td>Bioconductor packages.</td>
</tr>
<tr>
<td>widgetInvoke</td>
<td>Evaluation widgets for functions.</td>
</tr>
<tr>
<td>widgetTools</td>
<td>Tools for creating Tcl/Tk widgets, i.e., small-scale graphical user interfaces.</td>
</tr>
<tr>
<td>xcms</td>
<td>LC/MS and GC/MS data analysis: framework for processing and visualization of</td>
</tr>
<tr>
<td></td>
<td>chromatographically separated mass spectral data.</td>
</tr>
</tbody>
</table>
5.1.5 Other add-on packages

Jim Lindsey has written a collection of R packages for nonlinear regression and repeated measurements, consisting of *event* (event history procedures and models), *gnlm* (generalized nonlinear regression models), *growth* (multivariate normal and elliptically-contoured repeated measurements models), *repeated* (non-normal repeated measurements models), *rmutil* (utilities for nonlinear regression and repeated measurements), and *stable* (probability functions and generalized regression models for stable distributions). All analyses in the new edition of his book “Models for Repeated Measurements” (1999, Oxford University Press) were carried out using these packages. Jim has also started *dna*, a package with procedures for the analysis of DNA sequences. Jim’s packages can be obtained from http://popgen.unimaas.nl/~jlindsey/rcode.html.

More code has been posted to the R-help mailing list, and can be obtained from the mailing list archive.

5.2 How can add-on packages be installed?

(Unix only.) The add-on packages on CRAN come as gzipped tar files named *pkg_version.tar.gz*, which may in fact be “bundles” containing more than one package. Provided that tar and gzip are available on your system, type

```
$ R CMD INSTALL /path/to/pkg_version.tar.gz
```

at the shell prompt to install to the library tree rooted at the first directory given in *R_LIBS* (see below) if this is set and non-null, and to the default library (the ‘library’ subdirectory of ‘R_HOME’) otherwise. (Versions of R prior to 1.3.0 installed to the default library by default.)

To install to another tree (e.g., your private one), use

```
$ R CMD INSTALL -l lib /path/to/pkg_version.tar.gz
```

where *lib* gives the path to the library tree to install to.

Even more conveniently, you can install and automatically update packages from within R if you have access to repositories such as CRAN. See the help page for *available.packages()* for more information.

You can use several library trees of add-on packages. The easiest way to tell R to use these is via the environment variable *R_LIBS* which should be a colon-separated list of directories at which R library trees are rooted. You do not have to specify the default tree in *R_LIBS*. E.g., to use a private tree in ‘$HOME/lib/R’ and a public site-wide tree in ‘/usr/local/lib/R-contrib’, put

```
R_LIBS="$HOME/lib/R:/usr/local/lib/R-contrib"; export R_LIBS
```

into your (Bourne) shell profile or even preferably, add the line

```
R_LIBS="~/lib/R:/usr/local/lib/R-contrib"
```

your environment (e.g., ‘~/Renviron’) file. (Note that no export statement is needed or allowed in this file; see the on-line help for *Startup* for more information.)
5.3 How can add-on packages be used?

To find out which additional packages are available on your system, type

```
library()
```

at the R prompt.

This produces something like

```
Packages in '/home/me/lib/R':
mystuff  My own R functions, nicely packaged but not documented

Packages in '/usr/local/lib/R/library':
KernSmooth Functions for kernel smoothing for Wand & Jones (1995)
MASS Main Package of Venables and Ripley’s MASS
base The R Base package
boot Bootstrap R (S-Plus) Functions (Canty)
class Functions for Classification
cluster Functions for clustering (by Rousseeuw et al.)
codetools Code Analysis Tools for R
datasets The R Datasets Package
foreign Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat, dBase, ...
grDevices The R Graphics Devices and Support for Colours and Fonts
graphics The R Graphics Package
grid The Grid Graphics Package
lattice Lattice Graphics
methods Formal Methods and Classes
mgcv GAMs with GCV smoothness estimation and GAMMs by REML/PQ
nlme Linear and Nonlinear Mixed Effects Models
nnet Feed-forward Neural Networks and Multinomial Log-Linear Models
rpart Recursive Partitioning
spatial Functions for Kriging and Point Pattern Analysis
splines Regression Spline Functions and Classes
stats The R Stats Package
stats4 Statistical functions using S4 Classes
survival Survival analysis, including penalised likelihood
tcltk Tcl/Tk Interface
tools Tools for Package Development
utils The R Utils Package
```

You can “load” the installed package `pkg` by

```
library(pkg)
```

You can then find out which functions it provides by typing one of

```
library(help = pkg)
help(package = pkg)
```

You can unload the loaded package `pkg` by

```
detach("package:pkg")
```
5.4 How can add-on packages be removed?

Use

```
$ R CMD REMOVE pkg_1 ... pkg_n
```

to remove the packages `pkg_1`, . . . , `pkg_n` from the library tree rooted at the first directory given in `R_LIBS` if this is set and non-null, and from the default library otherwise. (Versions of R prior to 1.3.0 removed from the default library by default.)

To remove from library `lib`, do

```
$ R CMD REMOVE -l lib pkg_1 ... pkg_n
```

5.5 How can I create an R package?

A package consists of a subdirectory containing the files ‘DESCRIPTION’ and ‘INDEX’, and the subdirectories ‘R’, ‘data’, ‘demo’, ‘exec’, ‘inst’, ‘man’, ‘src’, and ‘tests’ (some of which can be missing). Optionally the package can also contain script files ‘configure’ and ‘cleanup’ which are executed before and after installation.

See section "Creating R packages" in Writing R Extensions, for details.

R version 1.3.0 has added the function `package.skeleton()` which will set up directories, save data and code, and create skeleton help files for a set of R functions and datasets.

See ⟨undefined⟩ [What is CRAN?], page ⟨undefined⟩, for information on uploading a package to CRAN.

5.6 How can I contribute to R?

R is in active development and there is always a risk of bugs creeping in. Also, the developers do not have access to all possible machines capable of running R. So, simply using it and communicating problems is certainly of great value.

One place where functionality is still missing is the modeling software as described in “Statistical Models in S” (see ⟨undefined⟩ [What is S?], page ⟨undefined⟩); some of the nonlinear modeling code is not there yet.

The http://developer.R-project.org/, R Developer Page acts as an intermediate repository for more or less finalized ideas and plans for the R statistical system. It contains (pointers to) TODO lists, RFCs, various other writeups, ideas lists, and CVS miscellanea.

Many (more) of the packages available at the Statlib S Repository might be worth porting to R.

If you are interested in working on any of these projects, please notify Kurt Hornik.
6 R and Emacs

6.1 Is there Emacs support for R?

There is an Emacs package called ess ("Emacs Speaks Statistics") which provides a standard interface between statistical programs and statistical processes. It is intended to provide assistance for interactive statistical programming and data analysis. Languages supported include: S dialects (R, S 3/4, and S-PLUS 3.x/4.x/5.x/6.x/7.x), LispStat dialects (XLispStat, ViSta), SAS, Stata, and BUGS.

ess grew out of the need for bug fixes and extensions to S-mode 4.8 (which was a GNU Emacs interface to S/S-PLUS version 3 only). The current set of developers desired support for XEmacs, R, S4, and MS Windows. In addition, with new modes being developed for R, Stata, and SAS, it was felt that a unifying interface and framework for the user interface would benefit both the user and the developer, by helping both groups conform to standard Emacs usage. The end result is an increase in efficiency for statistical programming and data analysis, over the usual tools.

R support contains code for editing R source code (syntactic indentation and highlighting of source code, partial evaluations of code, loading and error-checking of code, and source code revision maintenance) and documentation (syntactic indentation and highlighting of source code, sending examples to running ess process, and previewing), interacting with an inferior R process from within Emacs (command-line editing, searchable command history, command-line completion of R object and file names, quick access to object and search lists, transcript recording, and an interface to the help system), and transcript manipulation (recording and saving transcript files, manipulating and editing saved transcripts, and re-evaluating commands from transcript files).

The latest stable version of ess are available via CRAN or the http://ESS.R-project.org/, ESS web page. The HTML version of the documentation can be found at http://stat.ethz.ch/ESS/.

ess comes with detailed installation instructions.

For help with ess, send email to ESS-help@stat.math.ethz.ch.

Please send bug reports and suggestions on ess to ESS-bugs@stat.math.ethz.ch. The easiest way to do this from is within Emacs by typing M-x ess-submit-bug-report or using the [ESS] or [iESS] pulldown menus.

6.2 Should I run R from within Emacs?

Yes, definitely. Inferior R mode provides a readline/history mechanism, object name completion, and syntax-based highlighting of the interaction buffer using Font Lock mode, as well as a very convenient interface to the R help system.

Of course, it also integrates nicely with the mechanisms for editing R source using Emacs. One can write code in one Emacs buffer and send whole or parts of it for execution to R; this is helpful for both data analysis and programming. One can also seamlessly integrate with a revision control system, in order to maintain a log of changes in your programs and data, as well as to allow for the retrieval of past versions of the code.
In addition, it allows you to keep a record of your session, which can also be used for error recovery through the use of the transcript mode.

To specify command line arguments for the inferior R process, use `C-u M-x R` for starting R.

6.3 Debugging R from within Emacs

To debug R “from within Emacs”, there are several possibilities. To use the Emacs GUD (Grand Unified Debugger) library with the recommended debugger GDB, type `M-x gdb` and give the path to the R binary as argument. At the `gdb` prompt, set `R_HOME` and other environment variables as needed (using e.g. `set env R_HOME /path/to/R/`, but see also below), and start the binary with the desired arguments (e.g., `run --quiet`).

If you have `ess`, you can do `C-u M-x R RET - d SPC gdb RET` to start an inferior R process with arguments `'-d gdb'`.

A third option is to start an inferior R process via `ess` (`M-x R`) and then start GUD (`M-x gdb`) giving the R binary (using its full path name) as the program to debug. Use the program `ps` to find the process number of the currently running R process then use the `attach` command in `gdb` to attach it to that process. One advantage of this method is that you have separate `*R*` and `*gud-gdb*` windows. Within the `*R*` window you have all the `ess` facilities, such as object-name completion, that we know and love.

When using GUD mode for debugging from within Emacs, you may find it most convenient to use the directory with your code in it as the current working directory and then make a symbolic link from that directory to the R binary. That way `.gdbinit` can stay in the directory with the code and be used to set up the environment and the search paths for the source, e.g. as follows:

```
set env R_HOME /opt/R
set env R_PAPERSIZE letter
set env R_PRINTCMD lpr
dir /opt/R/src/appl
dir /opt/R/src/main
dir /opt/R/src/nmath
dir /opt/R/src/unix
```
7 R Miscellanea

7.1 How can I set components of a list to NULL?

You can use

\[x[i] \leftarrow \text{list}(\text{NULL}) \]

to set component \(i \) of the list \(x \) to NULL, similarly for named components. Do not set \(x[i] \) or \(x[[i]] \) to NULL, because this will remove the corresponding component from the list.

For dropping the row names of a matrix \(x \), it may be easier to use \(\text{rownames}(x) \leftarrow \text{NULL} \), similarly for column names.

7.2 How can I save my workspace?

\(\text{save.image()} \) saves the objects in the user’s .GlobalEnv to the file ‘.RData’ in the R startup directory. (This is also what happens after \(\text{q(”yes”)} \).) Using \(\text{save.image(file)} \) one can save the image under a different name.

7.3 How can I clean up my workspace?

To remove all objects in the currently active environment (typically .GlobalEnv), you can do

\[\text{rm(list = ls(all = TRUE))} \]

(Without ‘all = TRUE’, only the objects with names not starting with a ‘.’ are removed.)

7.4 How can I get eval() and D() to work?

Strange things will happen if you use \(\text{eval(print(x), envir = e)} \) or \(\text{D(x^2, ”x”)} \). The first one will either tell you that "x" is not found, or print the value of the wrong \(x \). The other one will likely return zero if \(x \) exists, and an error otherwise.

This is because in both cases, the first argument is evaluated in the calling environment first. The result (which should be an object of mode "expression" or "call") is then evaluated or differentiated. What you (most likely) really want is obtained by “quoting” the first argument upon surrounding it with \(\text{expression()} \). For example,

\[\text{R> D(expression(x^2), ”x”)} \]

\[2 \ast x \]

Although this behavior may initially seem to be rather strange, is perfectly logical. The “intuitive” behavior could easily be implemented, but problems would arise whenever the expression is contained in a variable, passed as a parameter, or is the result of a function call. Consider for instance the semantics in cases like

\[\text{D2} \leftarrow \text{function(e, n) D(D(e, n), n)} \]
\[g \leftarrow \text{function}(y) \ \text{eval}(\text{substitute}(y), \ \text{sys.frame}(\text{sys.parent}(n = 2))) \]
\[g(a \times b) \]

See the help page for `deriv()` for more examples.

7.5 Why do my matrices lose dimensions?

When a matrix with a single row or column is created by a subscripting operation, e.g.,
\[
\text{row} \leftarrow \text{mat}[2, ,]
\]
it is by default turned into a vector. In a similar way if an array with dimension, say, \(2 \times 3 \times 1 \times 4 \) is created by subscripting it will be coerced into a \(2 \times 3 \times 4 \) array, losing the unnecessary dimension. After much discussion this has been determined to be a feature.

To prevent this happening, add the option `drop = FALSE` to the subscripting. For example,
\[
\text{rowmatrix} \leftarrow \text{mat}[2, , \text{drop} = \text{FALSE}] \quad \# \text{creates a row matrix} \\
\text{colmatrix} \leftarrow \text{mat}[, 2, \text{drop} = \text{FALSE}] \quad \# \text{creates a column matrix} \\
\text{a} \leftarrow \text{b}[1, 1, 1, \text{drop} = \text{FALSE}] \quad \# \text{creates a} \ 1 \times 1 \times 1 \text{ array}
\]

The `drop = FALSE` option should be used defensively when programming. For example, the statement
\[
\text{somerows} \leftarrow \text{mat}[\text{index}, ,]
\]
will return a vector rather than a matrix if `index` happens to have length 1, causing errors later in the code. It should probably be rewritten as
\[
\text{somerows} \leftarrow \text{mat}[\text{index}, , \text{drop} = \text{FALSE}]
\]

7.6 How does autoloading work?

R has a special environment called `.AutoloadEnv`. Using `autoload(name, pkg)`, where `name` and `pkg` are strings giving the names of an object and the package containing it, stores some information in this environment. When R tries to evaluate `name`, it loads the corresponding package `pkg` and reevaluates `name` in the new package’s environment.

Using this mechanism makes R behave as if the package was loaded, but does not occupy memory (yet).

See the help page for `autoload()` for a very nice example.

7.7 How should I set options?

The function `options()` allows setting and examining a variety of global “options” which affect the way in which R computes and displays its results. The variable `.Options` holds the current values of these options, but should never directly be assigned to unless you want to drive yourself crazy—simply pretend that it is a “read-only” variable.

For example, given
\[
\text{test1} \leftarrow \text{function}(x = \pi, \text{dig} = 3) \{ \\
\quad \text{oo} \leftarrow \text{options(digits = dig)}; \ \text{on.exit(options(oo))}; \\
\quad \text{cat(}.\text{Options$\text{digits}, x, "\n")}
\]
test2 <- function(x = pi, dig = 3) {
 .Options$digits <- dig
 cat(.Options$digits, x, "\n")
}

we obtain:

R> test1()
3 3.14
R> test2()
3 3.141593

What is really used is the global value of .Options, and using options(OPT = VAL) correctly updates it. Local copies of .Options, either in .GlobalEnv or in a function environment (frame), are just silently disregarded.

7.8 How do file names work in Windows?

As R uses C-style string handling, ‘\’ is treated as an escape character, so that for example one can enter a newline as ‘\n’. When you really need a ‘\’, you have to escape it with another ‘\’.

Thus, in filenames use something like "c:\data\money.dat". You can also replace ‘\’ by ‘/’ ("c:/data/money.dat").

7.9 Why does plotting give a color allocation error?

On an X11 device, plotting sometimes, e.g., when running demo("image"), results in “Error: color allocation error”. This is an X problem, and only indirectly related to R. It occurs when applications started prior to R have used all the available colors. (How many colors are available depends on the X configuration; sometimes only 256 colors can be used.)

One application which is notorious for “eating” colors is Netscape. If the problem occurs when Netscape is running, try (re)starting it with either the ‘--no-install’ (to use the default colormap) or the ‘--install’ (to install a private colormap) option.

You could also set the colortype of X11() to "pseudo.cube" rather than the default "pseudo". See the help page for X11() for more information.

7.10 How do I convert factors to numeric?

It may happen that when reading numeric data into R (usually, when reading in a file), they come in as factors. If \(f \) is such a factor object, you can use

\[
\text{as.numeric(as.character}(f))
\]

to get the numbers back. More efficient, but harder to remember, is

\[
\text{as.numeric(levels}(f))[\text{as.integer}(f)]
\]

In any case, do not call \text{as.numeric}() or their likes directly for the task at hand (as \text{as.numeric}() or \text{unclass}() give the internal codes).
7.11 Are Trellis displays implemented in R?

The recommended package `lattice` (which is based on another recommended package, `grid`) provides graphical functionality that is compatible with most Trellis commands.

You could also look at `coplot()` and `dotchart()` which might do at least some of what you want. Note also that the R version of `pairs()` is fairly general and provides most of the functionality of `splom()`, and that R’s default plot method has an argument `asp` allowing to specify (and fix against device resizing) the aspect ratio of the plot.

(Because the word “Trellis” has been claimed as a trademark we do not use it in R. The name “lattice” has been chosen for the R equivalent.)

7.12 What are the enclosing and parent environments?

Inside a function you may want to access variables in two additional environments: the one that the function was defined in (“enclosing”), and the one it was invoked in (“parent”).

If you create a function at the command line or load it in a package its enclosing environment is the global workspace. If you define a function `f()` inside another function `g()` its enclosing environment is the environment inside `g()`. The enclosing environment for a function is fixed when the function is created. You can find out the enclosing environment for a function `f()` using `environment(f)`.

The “parent” environment, on the other hand, is defined when you invoke a function. If you invoke `lm()` at the command line its parent environment is the global workspace, if you invoke it inside a function `f()` then its parent environment is the environment inside `f()`. You can find out the parent environment for an invocation of a function by using `parent.frame()` or `sys.frame(sys.parent())`.

So for most user-visible functions the enclosing environment will be the global workspace, since that is where most functions are defined. The parent environment will be wherever the function happens to be called from. If a function `f()` is defined inside another function `g()` it will probably be used inside `g()` as well, so its parent environment and enclosing environment will probably be the same.

Parent environments are important because things like model formulas need to be evaluated in the environment the function was called from, since that’s where all the variables will be available. This relies on the parent environment being potentially different with each invocation.

Enclosing environments are important because a function can use variables in the enclosing environment to share information with other functions or with other invocations of itself (see the section on lexical scoping). This relies on the enclosing environment being the same each time the function is invoked. (In C this would be done with static variables.)

Scoping is hard. Looking at examples helps. It is particularly instructive to look at examples that work differently in R and S and try to see why they differ. One way to describe the scoping differences between R and S is to say that in S the enclosing environment is always the global workspace, but in R the enclosing environment is wherever the function was created.
7.13 How can I substitute into a plot label?

Often, it is desired to use the value of an R object in a plot label, e.g., a title. This is easily accomplished using *paste()* if the label is a simple character string, but not always obvious in case the label is an expression (for refined mathematical annotation). In such a case, either use *parse()* on your pasted character string or use *substitute()* on an expression. For example, if *ahat* is an estimator of your parameter *a* of interest, use

```
> title(substitute(hat(a) == ahat, list(ahat = ahat)))
```

(note that it is ‘==’ and not ‘=’). Sometimes *bquote()* gives a more compact form, e.g.,

```
> title(bquote(hat(a) = .(ahat)))
```

where subexpressions enclosed in ‘. ()’ are replaced by their values.

There are more worked examples in the mailing list archives.

7.14 What are valid names?

When creating data frames using *data.frame()* or *read.table()* R by default ensures that the variable names are syntactically valid. (The argument ‘check.names’ to these functions controls whether variable names are checked and adjusted by *make.names()* if needed.)

To understand what names are “valid”, one needs to take into account that the term “name” is used in several different (but related) ways in the language:

1. A **syntactic name** is a string the parser interprets as this type of expression. It consists of letters, numbers, and the dot and (for version of R at least 1.9.0) underscore characters, and starts with either a letter or a dot not followed by a number. Reserved words are not syntactic names.

2. An **object name** is a string associated with an object that is assigned in an expression either by having the object name on the left of an assignment operation or as an argument to the *assign()* function. It is usually a syntactic name as well, but can be any non-empty string if it is quoted (and it is always quoted in the call to *assign()*).

3. An **argument name** is what appears to the left of the equals sign when supplying an argument in a function call (for example, *f(trim=.5)*). Argument names are also usually syntactic names, but again can be anything if they are quoted.

4. An **element name** is a string that identifies a piece of an object (a component of a list, for example.) When it is used on the right of the `$` operator, it must be a syntactic name, or quoted. Otherwise, element names can be any strings. (When an object is used as a database, as in a call to *eval()* or *attach()* the element names become object names.)

5. Finally, a **file name** is a string identifying a file in the operating system for reading, writing, etc. It really has nothing much to do with names in the language, but it is traditional to call these strings file “names”.

7.15 Are GAMs implemented in R?

Package `gam` from CRAN implements all the Generalized Additive Models (GAM) functionality as described in the GAM chapter of the White Book. In particular, it implements backfitting with both local regression and smoothing splines, and is extendable. There is a `gam()` function for GAMs in package `mgcv`, but it is not an exact clone of what is described in the White Book (no `lo()` for example). Package `gss` can fit spline-based GAMs too. And if you can accept regression splines you can use `glm()`. For gaussian GAMs you can use `bruto()` from package `mda`.

7.16 Why is the output not printed when I source() a file?

Most R commands do not generate any output. The command

```
1+1
```

computes the value 2 and returns it; the command

```
summary(glm(y~x+z, family=binomial))
```

fits a logistic regression model, computes some summary information and returns an object of class "summary.glm" (see (undefined) [How should I write summary methods?], page (undefined)).

If you type `1+1` or `summary(glm(y~x+z, family=binomial))` at the command line the returned value is automatically printed (unless it is `invisible()`), but in other circumstances, such as in a source()d file or inside a function it isn’t printed unless you specifically print it.

To print the value use

```
print(1+1)
```

or

```
print(summary(glm(y~x+z, family=binomial)))
```

instead, or use `source(file, echo=TRUE)`.

7.17 Why does outer() behave strangely with my function?

As the help for `outer()` indicates, it does not work on arbitrary functions the way the `apply()` family does. It requires functions that are vectorized to work elementwise on arrays. As you can see by looking at the code, `outer(x, y, FUN)` creates two large vectors containing every possible combination of elements of x and y and then passes this to FUN all at once. Your function probably cannot handle two large vectors as parameters.

If you have a function that cannot handle two vectors but can handle two scalars, then you can still use `outer()` but you will need to wrap your function up first, to simulate vectorized behavior. Suppose your function is

```r
foo <- function(x, y, happy) {
  stopifnot(length(x) == 1, length(y) == 1) # scalars only!
  (x + y) * happy
}
```
If you define the general function

```r
wrapper <- function(x, y, my.fun, ...) {
  sapply(seq(along = x), FUN = function(i) my.fun(x[i], y[i], ...))
}
```

then you can use `outer()` by writing, e.g.,

```r
outer(1:4, 1:2, FUN = wrapper, my.fun = foo, happy = 10)
```

7.18 Why does the output from `anova()` depend on the order of factors in the model?

In a model such as `~A+B+A:B`, R will report the difference in sums of squares between the models `~1`, `~A`, `~A+B` and `~A+B+A:B`. If the model were `~B+A+A:B`, R would report differences between `~1`, `~B`, `~A+B`, and `~A+B+A:B`. In the first case the sum of squares for `A` is comparing `~1` and `~A`, in the second case it is comparing `~B` and `~B+A`. In a non-orthogonal design (i.e., most unbalanced designs) these comparisons are (conceptually and numerically) different.

Some packages report instead the sums of squares based on comparing the full model to the models with each factor removed one at a time (the famous ‘Type III sums of squares’ from SAS, for example). These do not depend on the order of factors in the model. The question of which set of sums of squares is the Right Thing provokes low-level holy wars on R-help from time to time.

There is no need to be agitated about the particular sums of squares that R reports. You can compute your favorite sums of squares quite easily. Any two models can be compared with `anova(model1, model2)`, and `drop1(model1)` will show the sums of squares resulting from dropping single terms.

7.19 How do I produce PNG graphics in batch mode?

Under a Unix-alike, if your installation supports the `type="cairo"` option to the `png()` device there should be no problems, and the default settings should just work. This option is not available for versions of R prior to 2.7.0, or without support for cairo. From R 2.7.0 `png()` by default uses the Quartz device on Mac OS X, and that too works in batch mode.

Earlier versions of the `png()` device uses the X11 driver, which is a problem in batch mode or for remote operation. If you have Ghostscript you can use `bitmap()`, which produces a PostScript or PDF file then converts it to any bitmap format supported by Ghostscript. On some installations this produces ugly output, on others it is perfectly satisfactory. Many systems now come with Xvfb from http://www.x.org/Downloads.html, X.Org (possibly as an optional install), which is an X11 server that does not require a screen; and there is the `GDD` package from CRAN, which produces PNG, JPEG and GIF bitmaps without X11.

7.20 How can I get command line editing to work?

The Unix command-line interface to R can only provide the inbuilt command line editor which allows recall, editing and re-submission of prior commands provided that the GNU readline library is available at the time R is configured for compilation. Note that the
‘development’ version of readline including the appropriate headers is needed: users of Linux binary distributions will need to install packages such as libreadline-dev (Debian) or readline-devel (Red Hat).

7.21 How can I turn a string into a variable?

If you have

```r
varname <- c("a", "b", "d")
```
you can do

```r
get(varname[1]) + 2
```
for

```r
a + 2
```
or

```r
assign(varname[1], 2 + 2)
```
for

```r
a <- 2 + 2
```
or

```r
eval(substitute(lm(y ~ x + variable),
    list(variable = as.name(varname[1])))
```
for

```r
lm(y ~ x + a)
```

At least in the first two cases it is often easier to just use a list, and then you can easily index it by name

```r
vars <- list(a = 1:10, b = rnorm(100), d = LETTERS)
vars[["a"]]
```
without any of this messing about.

7.22 Why do lattice/trellis graphics not work?

The most likely reason is that you forgot to tell R to display the graph. Lattice functions such as `xyplot()` create a graph object, but do not display it (the same is true of Trellis graphics in S-Plus). The `print()` method for the graph object produces the actual display. When you use these functions interactively at the command line, the result is automatically printed, but in `source()` or inside your own functions you will need an explicit `print()` statement.

7.23 How can I sort the rows of a data frame?

To sort the rows within a data frame, with respect to the values in one or more of the columns, simply use `order()` (e.g., `DF[order(DFa, DF[["b"]]),]` to sort the data frame `DF` on columns named `a` and `b`).
7.24 Why does the help.start() search engine not work?

The browser-based search engine in help.start() utilizes a Java applet. In order for this to function properly, a compatible version of Java must be installed on your system and linked to your browser, and both Java and JavaScript need to be enabled in your browser.

There have been a number of compatibility issues with versions of Java and of browsers. See section “Enabling search in HTML help” in R Installation and Administration, for further details.

7.25 Why did my .Rprofile stop working when I updated R?

Did you read the ‘NEWS’ file? For functions that are not in the base package you need to specify the correct package namespace, since the code will be run before the packages are loaded. E.g.,

```r
ps.options(horizontal = FALSE)
help.start()
```

needs to be

```r
grDevices::ps.options(horizontal = FALSE)
utils::help.start()
```

(One more example: graphics::ps.options(horizontal = FALSE) in R 1.9.x).

7.26 Where have all the methods gone?

Many functions, particularly S3 methods, are now hidden in namespaces. This has the advantage that they cannot be called inadvertently with arguments of the wrong class, but it makes them harder to view.

To see the code for an S3 method (e.g., [.terms) use

```r
getS3method("[", "terms")
```

To see the code for an unexported function foo() in the namespace of package "bar" use bar:::foo. Don’t use these constructions to call unexported functions in your own code—they are probably unexported for a reason and may change without warning.

7.27 How can I create rotated axis labels?

To rotate axis labels (using base graphics), you need to use text(), rather than mtext(), as the latter does not support par("srt").

```r
## Increase bottom margin to make room for rotated labels
par(mar = c(7, 4, 4, 2) + 0.1)
## Create plot with no x axis and no x axis label
plot(1:8, xaxt = "n", xlab = "")
## Set up x axis with tick marks alone
axis(1, labels = FALSE)
## Create some text labels
```
```r
labels <- paste("Label", 1:8, sep = " ")
## Plot x axis labels at default tick marks
text(1:8, par("usr")[3] - 0.25, srt = 45, adj = 1,
    labels = labels, xpd = TRUE)
## Plot x axis label at line 6 (of 7)
mtext(1, text = "X Axis Label", line = 6)
```

When plotting the x axis labels, we use `srt = 45` for text rotation angle, `adj = 1` to place the right end of text at the tick marks, and `xpd = TRUE` to allow for text outside the plot region. You can adjust the value of the 0.25 offset as required to move the axis labels up or down relative to the x axis. See `?par` for more information.

Also see Figure 1 and associated code in Paul Murrell (2003), "Integrating grid Graphics Output with Base Graphics Output", *R News*, 3/2, 7–12.

7.28 Why is `read.table()` so inefficient?

By default, `read.table()` needs to read in everything as character data, and then try to figure out which variables to convert to numerics or factors. For a large data set, this takes considerable amounts of time and memory. Performance can substantially be improved by using the `colClasses` argument to specify the classes to be assumed for the columns of the table.

7.29 What is the difference between package and library?

A *package* is a standardized collection of material extending R, e.g. providing code, data, or documentation. A *library* is a place (directory) where R knows to find packages it can use (i.e., which were *installed*). R is told to use a package (to "load" it and add it to the search path) via calls to the function `library`. I.e., `library()` is employed to load a package from libraries containing packages.

7.30 I installed a package but the functions are not there

To actually *use* the package, it needs to be *loaded* using `library()`.

See [R Add-On Packages], page [What is the difference between package and library?], for more information.

7.31 Why doesn’t R think these numbers are equal?

The only numbers that can be represented exactly in R’s numeric type are integers and fractions whose denominator is a power of 2. Other numbers have to be rounded to (typically) 53 binary digits accuracy. As a result, two floating point numbers will not reliably be equal unless they have been computed by the same algorithm, and not always even then. For example

```r
# Example of unequal floating point numbers
x <- 0.1
y <- 0.1
z <- x + y
```

In this example, `x`, `y`, and `z` are all stored as floating point numbers, but due to rounding errors, `z` may not be exactly equal to `x + y`. To check for equality, you might need to use a tolerance level, e.g.,

```r
all.equal(x, z)  # Compare the two values
```

This will return a boolean value indicating whether the two values are equal within a specified tolerance.
R> a <- sqrt(2)
R> a * a == 2
[1] FALSE
R> a * a - 2
[1] 4.440892e-16

The function `all.equal()` compares two objects using a numeric tolerance of
`.Machine$double.eps ^ 0.5`. If you want much greater accuracy than this you will need
to consider error propagation carefully.

For more information, see e.g. David Goldberg (1991), “What Every Computer Scientist
Should Know About Floating-Point Arithmetic”, *ACM Computing Surveys*, 23/1, 5–48,
also available via http://docs.sun.com/source/806-3568/ncg_goldberg.html.

To quote from “The Elements of Programming Style” by Kernighan and Plauger:

> 10.0 times 0.1 is hardly ever 1.0.

7.32 How can I capture or ignore errors in a long simulation?

Use `try()`, which returns an object of class "try-error" instead of an error, or preferably `tryCatch()`, where the return value can be configured more flexibly. For example

```r
beta[i,] <- tryCatch(coef(lm(formula, data)),
                      error = function(e) rep(NaN, 4))
```

would return the coefficients if the `lm()` call succeeded and would return `c(NaN, NaN, NaN, NaN)` if it failed (presumably there are supposed to be 4 coefficients in this example).

7.33 Why are powers of negative numbers wrong?

You are probably seeing something like

```r
R> -2^2
[1] -4
```

and misunderstanding the precedence rules for expressions in R. Write

```r
R> (-2)^2
[1] 4
```

to get the square of \(-2\).

The precedence rules are documented in `?Syntax`, and to see how R interprets an expression you can look at the parse tree

```r
R> as.list(quote(-2^2))
[[1]]
'-'
[[2]]
2^2
```
7.34 How can I save the result of each iteration in a loop into a separate file?

One way is to use `paste()` (or `sprintf()`) to concatenate a stem filename and the iteration number while `file.path()` constructs the path. For example, to save results into files ‘result1.rda’, ‘result2.rda’, ‘result100.rda’ in the subdirectory ‘Results’ of the current working directory, one can use

```r
for(i in 1:100) {
  ## Calculations constructing "some_object" ...
  fp <- file.path("Results", paste("result", i, ".rda", sep=""))
  save(list = "some_object", file = fp)
}
```

7.35 Why are p-values not displayed when using `lmer()`?

Doug Bates has kindly provided an extensive response in a post to the r-help list, which can be reviewed at https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html.

7.36 Why are there unwanted lines between polygons in PDF output viewed in Adobe Reader?

Output from `polygon()` (and other functions calling `polygon()`) with the argument `border=NA` or `border="transparent"` should suppress border lines between polygons for all graphics devices.

PDF output from R can be made in many ways, both directly, and through for example Postscript or Windows Metafiles converted to PDF in external software. In Adobe Reader, the default setting for line art, such as polygons, is to smooth, which produces the impression of thin borders. Adobe Reader does this both for PDF files written by R or through other software.

This is irritating, especially when using Adobe Reader for presentation. The unwanted effect can be removed by turning off smoothing for line art: use the ‘Edit | Preferences | Page Display | Smooth line art’ menu in Adobe Reader 7.0.

7.37 Why does backslash behave strangely inside strings?

This question most often comes up in relation to file names (see [undefined] [How do file names work in Windows?], page [undefined]) but it also happens that people complain that they cannot seem to put a single ‘\’ character into a text string unless it happens to be followed by certain other characters.

To understand this, you have to distinguish between character strings and representations of character strings. Mostly, the representation in R is just the string with a single or double quote at either end, but there are strings that cannot be represented that way, e.g., strings that themselves contains the quote character. So

```r
> str <- "This \"text\" is quoted"
> str
```

> str

> str
"This \"text\" is quoted"
> cat(str, "\n")

This "text" is quoted

The *escape sequences* `\"` and `\n` represent a double quote and the newline character respectively. Printing text strings, using `print()` or by typing the name at the prompt will use the escape sequences too, but the `cat()` function will display the string as-is. Notice that `"\n"` is a one-character string, not two; the backslash is not actually in the string, it is just generated in the printed representation.

> nchar("\n")
[1] 1
> substring("\n", 1, 1)
[1] "\n"

So how do you put a backslash in a string? For this, you have to escape the escape character. I.e., you have to double the backslash. as in

> cat("\n", "\n")

\n
Some functions, particularly those involving regular expression matching, themselves use metacharacters, which may need to be escaped by the backslash mechanism. In those cases you may need a *quadruple* backslash to represent a single literal one.

In versions of R up to 2.4.1 an unknown escape sequence like `\p` was quietly interpreted as just ‘p’. Current versions of R emit a warning.
8 R Programming

8.1 How should I write summary methods?

Suppose you want to provide a summary method for class "foo". Then `summary.foo()` should not print anything, but return an object of class "summary.foo", and you should write a method `print.summary.foo()` which nicely prints the summary information and invisibly returns its object. This approach is preferred over having `summary.foo()` print summary information and return something useful, as sometimes you need to grab something computed by `summary()` inside a function or similar. In such cases you don’t want anything printed.

8.2 How can I debug dynamically loaded code?

Roughly speaking, you need to start R inside the debugger, load the code, send an interrupt, and then set the required breakpoints.

See section “Finding entry points in dynamically loaded code” in Writing R Extensions.

8.3 How can I inspect R objects when debugging?

The most convenient way is to call `R_PV` from the symbolic debugger.

See section “Inspecting R objects when debugging” in Writing R Extensions.

8.4 How can I change compilation flags?

Suppose you have C code file for dynloading into R, but you want to use `R CMD SHLIB` with compilation flags other than the default ones (which were determined when R was built).

Starting with R 2.1.0, users can provide personal Makevars configuration files in `$HOME/.R` to override the default flags. See section “Add-on packages” in R Installation and Administration.

For earlier versions of R, you could change the file `$R_HOME/etc/Makeconf` to reflect your preferences, or (at least for systems using GNU Make) override them by the environment variable `MAKEFLAGS`. See section “Creating shared objects” in Writing R Extensions.

8.5 How can I debug S4 methods?

Use the `trace()` function with argument `signature=` to add calls to the browser or any other code to the method that will be dispatched for the corresponding signature. See `?trace` for details.
Chapter 9: R Bugs

9 R Bugs

9.1 What is a bug?

If R executes an illegal instruction, or dies with an operating system error message that indicates a problem in the program (as opposed to something like “disk full”), then it is certainly a bug. If you call `.C()`, `.Fortran()`, `.External()` or `.Call()` (or `.Internal()`) yourself (or in a function you wrote), you can always crash R by using wrong argument types (modes). This is not a bug.

Taking forever to complete a command can be a bug, but you must make certain that it was really R’s fault. Some commands simply take a long time. If the input was such that you know it should have been processed quickly, report a bug. If you don’t know whether the command should take a long time, find out by looking in the manual or by asking for assistance.

If a command you are familiar with causes an R error message in a case where its usual definition ought to be reasonable, it is probably a bug. If a command does the wrong thing, that is a bug. But be sure you know for certain what it ought to have done. If you aren’t familiar with the command, or don’t know for certain how the command is supposed to work, then it might actually be working right. For example, people sometimes think there is a bug in R’s mathematics because they don’t understand how finite-precision arithmetic works. Rather than jumping to conclusions, show the problem to someone who knows for certain. Unexpected results of comparison of decimal numbers, for example $0.28 \times 100 \neq 28$ or $0.1 + 0.2 \neq 0.3$, are not a bug. See ⟨undefined⟩ [Why doesn’t R think these numbers are equal?], page ⟨undefined⟩, for more details.

Finally, a command’s intended definition may not be best for statistical analysis. This is a very important sort of problem, but it is also a matter of judgment. Also, it is easy to come to such a conclusion out of ignorance of some of the existing features. It is probably best not to complain about such a problem until you have checked the documentation in the usual ways, feel confident that you understand it, and know for certain that what you want is not available. If you are not sure what the command is supposed to do after a careful reading of the manual this indicates a bug in the manual. The manual’s job is to make everything clear. It is just as important to report documentation bugs as program bugs. However, we know that the introductory documentation is seriously inadequate, so you don’t need to report this.

If the online argument list of a function disagrees with the manual, one of them must be wrong, so report the bug.

9.2 How to report a bug

When you decide that there is a bug, it is important to report it and to report it in a way which is useful. What is most useful is an exact description of what commands you type, starting with the shell command to run R, until the problem happens. Always include the version of R, machine, and operating system that you are using; type `version` in R to print this.
The most important principle in reporting a bug is to report facts, not hypotheses or categorizations. It is always easier to report the facts, but people seem to prefer to strain to posit explanations and report them instead. If the explanations are based on guesses about how R is implemented, they will be useless; others will have to try to figure out what the facts must have been to lead to such speculations. Sometimes this is impossible. But in any case, it is unnecessary work for the ones trying to fix the problem.

For example, suppose that on a data set which you know to be quite large the command

\begin{verbatim}
R> data.frame(x, y, z, monday, tuesday)
\end{verbatim}
never returns. Do not report that `data.frame()` fails for large data sets. Perhaps it fails when a variable name is a day of the week. If this is so then when others got your report they would try out the `data.frame()` command on a large data set, probably with no day of the week variable name, and not see any problem. There is no way in the world that others could guess that they should try a day of the week variable name.

Or perhaps the command fails because the last command you used was a method for `[[()` that had a bug causing R’s internal data structures to be corrupted and making the `data.frame()` command fail from then on. This is why others need to know what other commands you have typed (or read from your startup file).

It is very useful to try and find simple examples that produce apparently the same bug, and somewhat useful to find simple examples that might be expected to produce the bug but actually do not. If you want to debug the problem and find exactly what caused it, that is wonderful. You should still report the facts as well as any explanations or solutions. Please include an example that reproduces the problem, preferably the simplest one you have found.

Invoking R with the ‘--vanilla’ option may help in isolating a bug. This ensures that the site profile and saved data files are not read.

Before you actually submit a bug report, you should check whether the bug has already been reported and/or fixed. First, try the “Search Existing Reports” facility in the Bug Tracking page at http://bugs.R-project.org/. Second, consult https://svn.R-project.org/R/trunk/NEWS, which records changes that will appear in the next release of R, including some bug fixes that do not appear in Bug Tracking. (Windows users should additionally consult https://svn.R-project.org/R/trunk/src/gnuwin32/CHANGE.) Third, if possible try the current r-patched or r-devel version of R. If a bug has already been reported or fixed, please do not submit further bug reports on it. Finally, check carefully whether the bug is with R, or a contributed package. Bug reports on contributed packages should be sent first to the package maintainer, and only submitted to the R-bugs repository by package maintainers, mentioning the package in the subject line.

On Unix systems a bug report can be generated using the function `bug.report()`. This automatically includes the version information and sends the bug to the correct address. Alternatively the bug report can be emailed to `R-bugs@R-project.org` or submitted to the Web page at http://bugs.R-project.org/. Please try including results of `sessionInfo()` in your bug report.

There is a section of the bug repository for suggestions for enhancements for R labelled ‘wishlist’. Suggestions can be submitted in the same ways as bugs, but please ensure that the subject line makes clear that this is for the wishlist and not a bug report, for example by starting with ‘Wishlist:’.
Comments on and suggestions for the Windows port of R should be sent to R-windows@R-project.org.

Corrections to and comments on message translation should be sent to the last translator (listed at the top of the appropriate ‘.po’ file) or to the translation team as listed at http://developer.R-project.org/TranslationTeams.html.
10 Acknowledgments

Of course, many many thanks to Robert and Ross for the R system, and to the package writers and porters for adding to it.

Special thanks go to Doug Bates, Peter Dalgaard, Paul Gilbert, Stefano Iacus, Fritz Leisch, Jim Lindsey, Thomas Lumley, Martin Maechler, Brian D. Ripley, Anthony Rossini, and Andreas Weingessel for their comments which helped me improve this FAQ.

More to come soon . . .
The list of things we hope to implement in R/qtl is available here. Many items on the list will not be tackled for quite some time. If you have extensions to R/qtl that may be of general use, send an email to Karl Broman (kbroman at biostat.wisc.edu); he will be happy to discuss incorporating your code into the package. I'm getting the following error/warning; what does it mean? See also the R for Windows FAQ and, within R, type ?Memory and ?memory.size. I'm still running out of memory; what should I do?