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Abstract. Mathematics is the science of number, time, motion, and space (FAQ1). Over the past five
millenia∗ our understanding of these four concepts and their inter-relations has changed significantly, due
largely to mathematical researches which over the same period have transformed mathematics and its
applications. Where the four were once viewed as distinct concepts,1 they are now unified in a generalized
concept of number that has been enlarged through algebraic and analytic extension, in a process that
characterizes modern mathematics (FAQ2). In this paper we trace the evolution of number from the whole
numbers known since the dawn of counting, to the discovery of the octonions in the 19th century and their
connection with string theory and the grand unified ‘theory of everything’ in the 20th century.(FAQ13)
The main paper is a very brief three pages, followed by remarks, historical notes, FAQs, and appendices
covering theorems with proofs and an annotated bibliography. A project guide is in progress for learning
the material through exploration and self-discovery.

For scholars and laymen alike it is not philosophy but active experience in
mathematics itself that can alone answer the question: ‘What is Mathematics?’

Richard Courant (1941), book of the same title

“One of the disappointments experienced by most mathematics students is that
they never get a course on mathematics. They get courses in calculus, algebra,
topology, and so on, but the division of labor in teaching seems to prevent these

different topics from being combined into a whole. In fact, some of the most
important and natural questions are stifled because they fall on the wrong side of

topic boundary lines. Algebraists do not discuss the fundamental theory of algebra
because “that’s analysis”, and analysts do not discuss Riemann surfaces because

“that’s topology,” for example. Thus, if students are to feel they really know
mathematics by the time they graduate, there is a need to unify the subject.”

John Stillwell (1989), Mathematics and Its History

Number. refers to quantities which can be combined through computation using one or more operations.2

Whole numbers are familiar to all who have experience with counting,∗ integers to those who have engaged
in practical commerce (trade and exchange),† and rational numbers from surveying and measurement, or
from the arithmetic and algebra taught in schools. The essential properties of these number collections
have been extracted into a generalized algebraic setting, e.g. semi-rings generalize the positive whole
numbers N+, monoids the integers Z, and rings the rationals Q. These abstract structures provide an
axiomatic framework for computing with quite non-numerical objects.(FAQ4). As an extreme example,
Rock-paper-scissors is a finite magma, closed, commutative, non-associative, having neither inverses nor
identity elements, but within which computations follow clear rules understandable even by school age
children.3

The rational numbers are in theory sufficient for all of engineering and applied science, since every
measured number has finite precision and therefore must itself be rational.4 But the rationals are an infinite
set (FAQ5), so no finite precision computing machine could represent them all.5 As such, computational
mathematics uses the large but finite set of floating point numbers. These are able to represent both very
large and very small numbers with a known maximum error for numbers falling within range.6

The pressure to extend the exact numbers (those having no error) beyond the rationals comes from
1) numerical mathematics via error analysis, 2) geometry via incommensurability of length and area, 3)
algebra via solving algebraic polynomials and the desire for algebraic closure, and 4) analysis via the
continuum, completeness (freedom from ‘holes’) and connectedness (continuous paths connecting any two
points). This, as we shall see, takes us as far as the one-dimensional reals R and two-dimensional complex
numbers C (to be explained further on). From here, it is sheer curiosity, the fanciful exploration of a ‘what
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∗Extended anthropological studies of the indiginous Piraha people of the Brazilian Amazon have shown that counting is
not universal amongst all human cultures, as was previously thought (FAQ8)

†Counting tokens, abacus, knots in quipo, tally sticks, beans in gourds, have all been used to maintain commercial records
and execute transactions. Borrowing and lending motivated the use of negative numbers.
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2 THE EVOLUTION OF NUMBER IN MATHEMATICS

if. . . ’ and a ‘why not. . . ’ that culminates in the four-dimensional quaternions H and eight-dimensional
O. But as has often happened in mathematics, what starts off as fancy typically finds an application.
The octonions, discovered in the 19th century, earned their place in the 20th century through the deep
mathematics that explains why this tower of algebras is the way it is, why it stops at 8 dimensions (FAQ13),
and now, in the 21st century the possibility that these 8-dimensional numbers may actually be the best
language for describing the fundamental ‘grand unified theories’ of the universe. But first things first.

Computationally, exact numbers are required to improve floating point numerical algorithms and identify
the best arrangement of calculations to control the error that accumulates during extended computations.7

But geometry shows that the rational exact numbers are not plentiful enough to include many quantities
which are undeniably qualified to be considered as ‘number’, despite there being infinitely many rationals,
both at the large and small scales, and the property of Archimedes which says between any two rationals
there is always another. In on other words, there is no smallest quantum of granularity between rational
numbers. The existence of demonstrably irrational numbers should come as a shock—as it was for the
Greeks—but once one is found, then there are a whole lot more: these appear commonly as geometric
lengths (e.g. diagonals of squares and cubes e.g.

√
2 and 3

√
2), ratios of lengths (e.g. circumference to

diameter π, and the golden mean), chords of circles (2 sin θ for rational θ, i.e. not multiples of π), arclengths
of ellipses,8 rates (e.g. growth rate e under continuous compounding), or as binary decimal expansions
whose digits encode a parameterized decision problem (e.g. setting the nth binary digit to 1 if the nth
integer is prime, else 0) All of these irrational quantities exist in the sense that they can be defined precisely
and computed to arbitrary precision using rational numbers (typically using iteration) even though they
themselves are demonstrably not rational (FAQ9).

Algebraically, while the rationals are closed with respect to arithmetic–plus, minus, multiply, divide–
they are not closed with respect to algebraic operations (root, power). For example, it is not possible to
solve, within the rationals, all algebraic equations having rational coefficients. For example x2 − c = 0 has
no rational solutions either when c < 0 or c is prime, since Q contains neither

√
−1 = i nor

√
p for any

prime p.9

The simplest expansion is by field extension Q[F ], where F is the set of constants required to keep the

system closed, e.g. Q[i :=
√
−1] or Q[{ 3

√
2, 3

√
2
2}]. Expanding the rational numbers Q to include these

‘new’ numbers requires defining what addition and multiplication look like so as to 1) preserve the relations
of the existing numbers, and 2) ensure that what’s added preserves arithmetic closure.10 Multiplication
within the algebraically extended system is defined by treating each number as a binomial in the algebraic
constants x ∈ F .

Listing the constructions adding numbers to Q, we have:

(1) finite field extensions, e.g. by
√
2, { 3

√
2, 3

√
2
2}, i, or indeed a fixed literal x;

(2) constructible numbers: intersections obtained through a finite number of operations with a straight-edge

and compass, e.g.
√
2;

(3) algebraic numbers: all solutions of polynomials with rational coefficients—note this includes i =
√
−1, 3

√
2

(x3 − 2 = 0);
(4) periodic numbers: integrals of algebraic functions which includes non-algebraic transcendental numbers

such as arc-length of an ellipse (elliptic integrals[?], [?]);
(5) computable numbers: for which a finite terminating algorithm can be given for calculating the number to

arbitrary precision, e.g. π, er = limn→infty(1 + r/n)n,
√
π, eπ; 11 and

(6) definable numbers: any numbers which can be defined using first order logic (arithemtically definable) or

second or higher order logic (analytically definable); 12

At this stage we have gone as far as we can go with a constructivist understanding of number. We have
a number system that includes every known mathematical constant, all named transcendental numbers13,
and indeed even every potentially definable number. But while significantly expanded, our number set
is still countably infinite, i.e. can be placed in one-to-one correspondence with the whole numbers.14

Countable infinity—the cardinality of the rationals and the only form of infinity that the constructivist
approach allows—turns out to be a limiting condition to the birth of the continuum. We will be forced
to conclude that there is no way to obtain the continuum without triggering the admittance of the full
vastness of the so-called ‘uncountable infinity’.15

Analytically, we want a suitable model for the geometric continuum, i.e. we want a guarantee that
our number system does not have any holes or gaps. Connectedness is the requirement that there is a
continuous path between every pair of points (a, b) in a set S, such that the unit interval [0, 1] can be
mapped continuously into S. In symbols: ∃ f(t) : [0, 1] → S, s.t. f(0) = a, f(1) = b.16

It turns out that obtaining an analytically complete concept of number forces upon us a new set which
is enormous beyond imagining. So long as we do not allow a somehow larger notion of infinity, there
are simply not enough points with which to create a continuum, despite the expansions listed above to



THE EVOLUTION OF NUMBER IN MATHEMATICS 3

the rationals (FAQ5). This will mark the first encounter with a higher order of infinity, the uncountable

infinity (FAQ5).
Our route to constructing the continuum (following Cantor) is to explicitly define, as a distinct ‘number,

every convergent infinite sequence of rationals whose limit is distinct (alternatively Dedekind cut), then to
define the arithmetic combination of these, and finally to show that their totality is arithmetically closed
and therefore by definition analytically complete.17 The resulting set of ‘numbers’ (actually convergent
sequences) is denoted by R and called the ‘real’ numbers, as it is unique under isomorphism. With this
is constructed a precise mathematical model for both space (the continuum) and time (infinitely divisible
durations).18

Whereas the first shock was that the rationals are insufficient for geometry, there is now a second
shock: Cantor’s diagonal argument shows that R cannot be put into one-to-one correspondence with the
rationals, meaning that it is of a so-called uncountable infinity, i.e. a higher order of infinity than the
countable infinity. This is because R was built to include the set of all possible decimal expansions in
between every unit interval, i.e. all possible infinite sequences of digits. and so contains essentially the
powerset of the naturals. We know that the powerset of a set, whether finite or infinite, can never be
put into one-to-one correspondence with its generating set, i.e. in symbols, |℘(S)| 6= |S| ∀S. We are
thus forced to accept the disconcerting fact that by filling in all possible gaps to ensure the continuum
(spatially continuous model), we have introduced a vast, uncountable infinity of numbers which can neither
be computed nor even defined.

An example of the uncountably infinite new numbers that have been added into R, but which cannot be
constructed, computed, or even defined, is Chaitin’s constant, whose binary encoding is based on deciding
a sequence of halting problems. Since the halting problem is itself undecidable, the number is therefore
also undefinable.19

This vastness is a source of many paradoxes (‘monsters’) in analysis and topology.20 As an example, the
open interval (−ǫ,+ǫ) ∀ǫ > 0 can be shown to have the same cardinality as the entirity of R and furthermore
the same cardinality as Rn ∀n ∈ N (this is shown using a space- and volume- filling construction due to
Peano). Cardinality, not dimension, is now the key concept that determines the true size of sets. The
result is a collapse of infinite sizes into a countably infinite hierarchy, with countable infinity as the smallest
infinite cardinality ℵ0, and each power-set of the previous infinite cardinal gives the next, i.e. ℵ1 = 2ℵ0 ,
ℵ2 = 2ℵ1 , . . .. An unresolved question is whether there exists a set and cardinality greater than countable
ℵ0 but smaller than the cardinality of the continuum c = 2ℵ0 = ℵ1, i.e. whether the next largest infinite
cardinal is that of the continuum. This is the Continuum Hypothesis, shown to be independent of the
current standard model of set theory axiomatized by the ZFC axioms. One view among logicians is that
settling CH one way or the other will require additional axioms for set theory—but what their justification
might be is not yet clear.21

To bring algebraic closure to R, we must add the complex field extension with the usual definition of
addition of like symbols, and the binomial definition of multiplication described earlier. This forms the
set of complex numbers C = R[i :=

√
−1], also definable as a pair (a, b) of real numbers in a vector space

with basis {1, i}. This is the smallest analytically complete and algebraically closed field. All complex
algebraic operations are now permitted, including taking roots of negative real numbers, and powers and
roots of rationals, reals, and even complex numbers themselves. Importantly, every polynomial now splits
into linear factors in C or, in other words, has all its roots (the Fundamental Theorem of Algebra). But
algebraic closure for C comes at the cost of losing well-ordering and increasing the occurrence of branch
cuts.22

C has another remarkable property when viewed geometrically: multiplying by a complex number z is
equivalent to inducing motion: a stretching when z is pure real, rotation when pure imaginary, and both
together when z is general.23 This leads to a direct analogy between complex numbers and two-by-two
matrices:

z = (x+ iy) = reiθ =

(

x −y

y x

)

= r

(

cos θ − sin θ
sin θ cos θ

)

Inspired by this success with C, we discover the quaternions H as a pair of complex numbers to be an
algebraically closed field of dimension four, interpretable as stretching and rotation in three-dimensional
space, and reinforcing the link between number and motion. The geometric link means H can also be
modelled using 3× 3 matrices. But this is gained at a cost of losing commutativity.

Going further still, we discover the octonions O of dimension eight as a pair of quaternions, where now
associativity is sacrificed in their multiplication.24 Remarkably, this construction in powers of 2 stops here
— O are the highest dimension possible normed division ring. Equally remarkably, octonions have deep
connections to physics string theory and geometry. Further generalizations of the number concept are
vectors, matrices, tensors, and abstract rings25 and groups. (FAQ10)26
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We have now seen that the concept of number embodied in R and C describes space via the contin-
uum model (continuous coordinates using tuples of numbers forming multi-dimensional (vector) spaces),
describes time via infinitely divisible real quantities, and describes motion using C, H, and O, featuring
rotation and stretching in 2-, 3- and 8-dimensional space.27

Notes

1The Greeks shied away from number after discovering the incommensurability of a unit and the diagonal of a unit square,
separating in their science space and length from whole number. Motion was geometric, through space. Fermat and Descartes
returned number to space through the notion of coordinates that vary continuously. Cantor, Cauchy, Weierstrass created
the analytical (arithmetic) justification for the reals. Newtonian conception of time was a single flow, linear, unchanging,
constant. Minkowski and Einstein unified space and time into a single physical context. The complex numbers brought
in rotation, continued through the quaternions. Abstract algbra has extracted the essential properties to allow any sort of
computation, and group theory has captured motions in this. Through algebraic structures, the arithmetization of the reals,
analytic geometry, and the topological concepts of continutity, connectedness, and completeness, number has now unified
both motion and space.

2These are not required to have inverses, e.g. rock-paper-scissors, though in general, we move naturally to find systems
in which every operation can be reversed, since we believe there should always be a way back – if we go from A to B, there
should also be a way back to A. We prefer unique inverses, but we know that there are zero-divisors, e.g. two non-zero
matrices multiplied to get zero matrix (exercise). Just as there are multiple paths to get from A to B, so there are multiple
ways to get back.

3Rock · Scissors = Rock; Rock · paper = Paper; Scissors · Paper = Scissors. Note commutativity. But not asso-
ciativity: (Rock paper) · Scissors = Paper · Scissors = Scissors 6= Rock = Rock · Scissors = Rock · (Paper Scissors).
https://www.tofugu.com/japan/japanese-rock-paper-scissors/ Note–tournaments are notoriously non-associative algebras: A
beats B, B beats C, but C beats A. One might even say that life in general is non-associative because of the complexity
of how different talents interact. So associativity holds when A,B,C are simple, single-attribute objects, or when there is
no element of chance. Voting is another example. The cycles resemble warfare: cavalry effective against archers, archers

against pikemen, and pikemen against cavalry. There are connections with game theory, non-linear dynamics, graph theory
(for extensions with more elements), parity algorithms, and automated game playing algorithms which do historical analy-
sis). What makes a system non-associative? Why are the Octonions non-associative when the Quaternions are associative?
https://en.wikipedia.org/wiki/Rock-paper-scissors

4An irrational number must have an infinite and non-repeating decimal expansion. A rational number has either a finite
expansion, or if infinite but has a finite block that repeats indefinitely.

5FAQ9. It is worth noting that computational algebra systems (CAS) are able to work entirely in rationals. How do they
represent the entire set, both the very large and very small? How are they represented under-the-hood in finite precision
(e.g. 64-bit)?

6FAQ: floating point numbers and their error analysis. Describe for an 8-bit, 16-bit, and 64-bit computer.
7FAQ1: Infinite sets are problematic, even countably infinite ones such as the whole numbers, as they require second order

logic for their construction (first order logic is only capable of working with finite sets). And while a finite set with only
addition can escape Godels’ incompleteness theorem, infinite set and two operator arithmetic implies a logic structure that
is incomplete. FAQ2: development and improvement of these numerical methods.

8These are irrational because the elliptic integrals[?] involve roots, which we know are irrational.
9Indeed, this means this simple equation is insoluble for most composite numbers. It’s actually rather unusual to have a

perfect square. While there are infinitely many of these, they are ever more sparsely distributed in N.
10FAQ: Closure is an algebraic property. The rationals are a field. It will turn out that the largest reasonable exten-

sions are at least a division algebra, of which there are only 4 of finite dimension, R, C, H, O. See Division Algebra:
https://en.wikipedia.org/wiki/Division_algebra, Algebra over a field, https://en.wikipedia.org/wiki/Algebra_over_a_field, Al-
gebraically closed field, https://en.wikipedia.org/wiki/Algebraically_closed_field

11majority of real numbers are non-computable in the sense, e.g. of Specker sequences, which don’t have a computable
supremum despite being bounded and strictly increasing

12Definable number: https://en.wikipedia.org/wiki/Definable_real_number. Arithmetic closure is automatic by definition.
Are there any non-definable numbers?

13Since to know such a number is to be able to specify it with a definition
14Mathematical constants: https://en.wikipedia.org/wiki/Mathematical_constant
15This is because by constructive methods we could only reach countable infinity (recall even the computable and definable

numbers obtained above were countably infinite).
16Connectedness as a concept relies on continuity. Does connectedness require the axiom that the unit closed [0, 1] interval

is connected? Does continuity require the reals—i.e. can it be defined on the rationals? What about functions defined solely
on the rationals, and irrationals, e.g. f(x) = 0 if rational and 1 if irrational. Such a function is clearly not continuous
everywhere, but is it continuous anywhere? This has to do with the density of the rationals and irrationals in the reals. Why
is a discrete set disconnected?

17Is it acceptable from a set theory perspective to consider ll’ such sequences? Is this correct - R are complete by definition?
Revisit Rudin.

18It is a connected set in the sense of having a mathematically continuous path between every pair of points. The definition
of continuity is itself based on the properties of the rationals and the axiom that the interval (0,1) is connected ensures that
there is no hole, no minimum sized gap in the set of numbers. Implicitly we are using a distance measure, a metric, relating
distance between points with coordinates, numbers.

19Looking at Chaitin’s constant, one could make an argument for undefinable numbers being analogous to decision problems
based on free will - e.g. binary encoding what a robot would do at all decision points in an infinite maze (or for a person, all
decision points they face in life), and potentially all of the knock-on possibilities (considering all branches).

https://www.tofugu.com/japan/japanese-rock-paper-scissors/
https://en.wikipedia.org/wiki/Rock-paper-scissors
https://en.wikipedia.org/wiki/Division_algebra
https://en.wikipedia.org/wiki/Algebra_over_a_field
https://en.wikipedia.org/wiki/Algebraically_closed_field
https://en.wikipedia.org/wiki/Definable_real_number
https://en.wikipedia.org/wiki/Mathematical_constant


NOTES 5

20See Lakatov for discussion of monsters in mathematics. See counterexamples in analysis and topology for a catalog of
these. See remarks.

21See Solomon Feferman
22which takes precedence, 1 + i, or 1− i? Working in the reals saw branch cuts occur when taking the inverse of a one-to-

many function such as x2 or sin(x), and by convention a primary or canonical branch. In C, branching occurs much more
frequently, as all elementary functions (logarithmic, exponential, trigonometric, and hyperbolic) are one-to-many. (In R, log
and exp were one-to-one.).

23The Argand diagram shows complex numbers as vectors. The Euler identity and its derivation explains why multiplication
in C is expansion and rotation:

z = x+ iy = rcis(θ) = cos(θ) + i sin(θ) = reiθ

by recognizing x, y as projections in 2-D argand space, then replacing cos and sin with their infinite series expansions and
comparing with the series expansion of exp formally evaluated at i (FAQ6)/

24See John Baez.
25It’s actually quite remarkable and a significant constraint to require a set with two operations, an identity for both,

inverses for both, and the fact that there are no zero divisors. Why do the sedenions (the next algebra above octonions) lose
divisibility?

26There are two essential elements in the number concept: 1) the possession of an algebraic structure, and 2) the corre-
spondence between numbers, points, and lengths. Generalizations then occur algebraically for objects with closed binary
operations (e.g. a group), and geometrically/analytically for points having a geometric structure (e.g. vectors, Lie algebras).

27The view of complex numbers as inducing motions is the perspective of conformal mapping in complex variables theory.

Recommended Reading.

(1) [20] covers much of the material in this article in greater depth by a first rate research mathemati-
cian and prize winning expository writer of mathematics.

(2) [9] covers the foundations of our number systems in exceptional clarity by one of the foremost
logicians and authorities on the subject.

(3) [16] covers the construction of the number systems in an ultra-dry, Bourbaki style.
(4) [4] is an outstanding expository article on the octonions and their connections to higher algebra

and geometry.
(5) [19] is another exposition that covers the quaternions and octonions and their colorful history,

written by a master expositor.
(6) [14]
(7) [4] published in Scientific American, an interview with Baez
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The evolution of mathematics might be seen as an ever-increasing series of abstractions, or alternatively an expansion of subject
matter. The first abstraction was probably that of numbers. The realization that two apples and two oranges have something in common
was a breakthrough in human thought. In addition to recognizing how to count physical objects, prehistoric peoples also recognized how
to count abstract quantities, like time â€” days, seasons, years. Arithmetic (addition, subtraction, multiplication and division), naturally
followed. Monolithic monuments testify to knowledge of geometry
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