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7.1 Introduction

Handling data from charged particle analysers which measure phase space density re-
quires some care and attention. Even with a single satellite, the errors and uncertainties
introduced by energy level and response calibrations, incomplete sampling of phase space,
and discrete integration down to plasma moments (density, velocity, pressure, etc.) results
in basic errors typically larger than those in, say, magnetic field measurements (see Chap-
ter6 for more details concerning the computation of parameters from particle instruments).
Additionally, the time required to complete a sampling interval is often seconds or more,
comparable to many scales of interest and intrinsic variability, so that some time aliasing
is often present. Multi-spacecraft comparisons compound these difficulties. Thus many of
the methods (filtering, spatial gradient and other vector operators) introduced earlier with
electromagnetic fields as examples are much more difficult to apply to particle data.

On the other hand, particle data holds a richness in phase space information which can
be exploited to reveal the physical processes which govern the dynamics, and which can
probe/remote sense non-local structures. Nearly all such work is based on applications
of Liouville’s Theorem. In this chapter we explore some of the ways in which this phase
space information can be utilised. One major difference between these multi-spacecraft
particle techniques and those discussed earlier with respect to lower dimensional, higher
time resolution field data is that very often the particle techniques need to be adapted
and/or designed with a single specific study in mind. Thus the techniques described below
should be regarded as examples rather than off-the-shelf techniques.

Additionally, multi-species measurements provide another dimension which can be
utilised. At its most basic level, measurements of both ions and electrons enables a di-
rect measurement of the charge and current densities. Comparison of ions with different
masses (or charge-to-mass ratios) probes different scalelengths and differentiates the rela-
tive contributions of different forces.

This chapter is organised as follows. In the next section, we review Liouville’s The-
orem, and other background information. This is followed by a discussion of techniques
relating to basic moments of the particle distribution. Later sections cover various appli-
cations of Liouville’s Theorem and related phase space aspects.
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160 7. ANALYSIS OF PLASMA K INETICS

7.2 Liouville’s Theorem

The Boltzmann equation describes the evolution of the single particle phase space
distribution functionf (r, v, t):
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wherea = F/m is the acceleration of a non-relativistic particle (F is the force) and
the right-hand side includes the effects of collisions or other processes which give rise to
instantaneous changes in particle velocity or position (e.g., due to creation by ionisation,
etc.). The Boltzmann equation is a statement about particle conservation, and is most
easily interpreted by considering the flow into and out of a fixed volume of(r, v) phase
space. [For relativistic particlesf is written as a function of momentump instead of
velocity. The third term in equation7.1becomes∂/∂p · (Ff ).]

The variablesr andv are independent, so thev can be moved outside of the derivative
in middle term on the left-hand side. Additionally, if the velocity divergence of the accel-
eration is zero, the third term can be similarly rearranged. This is the case for the Lorentz
forceq (E + v × B). If the right-hand side of the Boltzmann equation can be neglected,
the result is
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[The relativistic form replaces(F/m) · ∂f/∂v with (F ) · ∂f/∂p.] The operator
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represents the Lagrangian or convective derivative following a single particle trajectory
(r(t), v(t)) in phase space. Thus equation7.2can be interpreted as a statement that phase
space density is constant along particle trajectories in phase space, i.e.,

f (r, v, t) = f (ro, vo,0) (7.4)

wherer(t) andv(t) are solutions of the particle equations of motion
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(7.5)

[or dp/dt = F ] with initial condition r(0) = ro andv(0) = vo. This is Liouville’s
Theorem, which reduces the task of solving equation7.2 to one of solving single particle
motion. Liouville’s Theorem provides the basic tool for analysing multi-spacecraft particle
data at the level of phase space density. The theorem is a very powerful, but easily misused,
approach to a variety of kinetic problems. We discuss a few typical applications below,
although individual problems often require specifically tailored techniques.

Most applications of Liouville’s Theorem rely on the further assumptions of adiabatic
particle motion in static or slowly varying fields. Magnetic moment conservation, for
example, yields

v2
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B
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v2
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(7.6)
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wherev⊥ is the particle gyro-speed perpendicular to the magnetic field. Energy conserva-
tion in an electrostatic potential further yields

v2
‖

+ v2
⊥

+ 2qφ/m = v2
‖o + v2

⊥o + 2qφo/m (7.7)

Equations7.6 and7.7 completely characterise the particle trajectory with these assump-
tions if the fieldsB andφ are given/known.

7.3 Liouville Mapping: Known Fields

If the (dc) electromagnetic fields are known, Liouville’s Theorem can be used to study
the extent to which scattering or other non-dc effects influence the particle response. Addi-
tionally, Liouville’s Theorem provides a valuable tool for exploring boundaries in velocity
space which can often be seen in particle data. These boundaries or features occur, e.g., as
separators between different sources of plasmas. The shape and timing of such boundaries
provides rich information about the plasma source, such as its location, extent, temporal
variation, and properties of the electromagnetic fields and processes both at the source and
during the subsequent particle motion to the spacecraft location.

Historically, applications of Liouville’s Theorem have employed single spacecraft mea-
surements by using measurements taken at different times, converting temporal variations
to spatial gradients assuming time stationarity. Multi-spacecraft missions offer the pos-
sibility to map from one spacecraft location to another, thereby eliminating this assump-
tion. However, since Liouville’s Theorem deals with particle trajectories, the spacecraft
in question must be connected by the trajectories of particles of interest. For particles
with small gyroradii and large speeds, such as electrons, this requirement reduces to the
spacecraft being connected by a magnetic field line. Slower particles and finite gyroradius
effects complicate the matter, as trajectories which reach a particular spacecraft may di-
verge when traced backward in time, so that further assumptions of spatial homogeneity
or symmetry may be required. Additionally, in a time-dependent situation, particles of
different speeds arriving at the same time will have left and traversed the intervening fields
at different times.

In the case where the fields are known and time stationary, the process is straight-
forward. Let us consider two spacecraft, numbered 1 and 2 and located atr1 and r2
respectively.

1. Solve equations7.5for r(t), v(t).

2. From these solutions, or from equations7.6 and7.7 if appropriate, deducev2(v1)

corresponding to individual particle trajectories.

3. Given the measured distributionf1(v) construct the mapped distributionfm2 (v =

v2(v1)) ≡ f1(v = v1) as demanded by Liouville’s Theorem. That is, assign to each
velocity v2 the phase space density from the original distributionf1 at the location
in phase space(r1, v1). If the original distributionf1 is represented by contours in
phase space, this amounts to taking points along the contour, mapping the motion of
these points using the trajectory equations, and connecting them up with a contour
whose height is identical to the original.
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Figure 7.1: Sketch of a mapping using Liouville’s Theorem to construct an expected dis-
tribution function. The solid line in the left is a contour of the observed phase space distri-
bution in a high field region. The dotted lines are circles representing constant energy. In
the absence of an electric potential, particle trajectories conserve energy and hence remain
on such circles. When mapped to a low field region (assuming magnetic moment conser-
vation), the final perpendicular velocity is given by equation7.6. Four such trajectories
are shown: two either side of 90◦ pitch angles, and two at intermediate pitch angles. Ad-
ditionally, points at 0◦ and 180◦ pitch angles are unaltered in the mapping. The resultant
mapped distribution is shown on the right (the arrowheads are left in to show the mapped
points from the left diagram). Since these points started on a single contour off (v) they
remain so, hence the mapped contour is found by connecting the arrowheads. Note that
mapping from high to low fields, as shown here, leaves inaccessible regions in which the
phase space density is filled in, if at all, by other processes or by trajectories which arrive
there without passing through the high field region.

A sketch of this construction in the case of a simple magnetic field decrease and
no potential difference is shown in Figure7.1. Note that this mapping fromr1
to r2 involves progressing some trajectories (e.g.,v‖ > 0) forward in time while
oppositely directed trajectories are advanced backward in time.

4. Compare the mapped distributionfm2 (v) with the observed onef2(v).

Discrepancies between observed and expected (mapped) distributions are indicators of
one (or more) processes, e.g.,

1. Incorrect specification of the fields. This will result in systematic trends in the dis-
crepancies in phase space. For example, an incorrect electric potential will shift all
points by a fixed amount in energy.

2. Particle scattering between the two points. This will evidence itself by discrepancies
localised to certain regions in phase space, with the observed distribution exhibiting
generally smoother or more rounded features than the mapped ones.

3. Particle Mirroring/Inacessible Regions of Phase Space. Some regions of phase space
may not be connected by trajectories which pass through both locations. For exam-
ple, if a field maximum lies between the two locations, particle trajectories around
90◦ will mirror and never reach the second location. The mapped distribution should
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therefore have holes, although the size and shape of such holes depends on knowl-
edge of the intervening structure. Holes also arise even in the case of spatially mono-
tonic fields due to the same mirroring arguments as shown in the example sketched
in Figure7.1. All of these holes are connected to locations beyond the second lo-
cation, and thus require specification of the phase space density there, rather than
at the first location. A corollary to this statement is that it is always safer to map
from low magnetic field regions to high ones rather thanvice versa, since trajecto-
ries move toward 90◦ in this case and such holes are avoided or at least minimised.
Electrostatic potentials also give rise to inaccessible regions in phase space.

Signatures of this behaviour include the appearance of holes in the mapped distribu-
tion, ridges along, e.g., lines of constant pitch angle which separate the accessible
regions (connected to the first location) from the inaccessible ones (connected to
points beyond the second location), parallel/anti-parallel symmetries in the observed
distribution caused by mirroring, and other similar features.

4. Lack of sufficient connection of trajectories between the two locations, lack of suf-
ficient time-synchronisation between the two measured distributions or knowledge
of the temporal and spatial of the behaviour of the fields during the measurement
interval, or some other aspect which makes the mapping inappropriate.

7.4 Liouville Mapping: Unknown Fields

In many cases, the intervening fields are not known, and are of interest. For exam-
ple, the electrostatic potential can be very difficult to measure directly in space. In these
circumstances, the mapping procedure can be used to determine the net field/potential
changes by inverting the procedure. That is, treat the unknown fields as free parameters
and adjust them to yield the best agreement between mapped and observed distributions.
This can be done either by trial and error or via a formalised approach having fit the
observed distributions with suitable functional forms and applying, e.g., a least squares
algorithm to determine the functional coefficients/constants which yield the best fit.

Note that this method can not determine the detailed spatial variation of the fields be-
tween the two locations, but only the net changes between the two locations. However, the
spatial variations could give rise to inaccessible regions in phase space, so that the mapped
distributions may not fit everywhere in phase space. These mis-matches actually provide
information about the intervening fields (e.g., magnetic field maxima, electric potential
barriers, or trapping regions). These possible intervening structures imply that some con-
siderable caution is required in applying simple mapping methods. Such problems may
be overcome to some extent by assumptions of stationarity, etc., which then provides a
whole sequence of distributions corresponding to relative motion between the spacecraft
and plasma. This sequence should map from one distribution to the next and to all oth-
ers, enabling some determination of the spatial variation of the fields corresponding to
the individual measured distributions. The prospect of three or more multipoint measure-
ments would allow, in perhaps fortuitous circumstances, a hybrid approach using multiple
mappings.
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7.5 Remote Sensing of Boundaries and Non-Local
Processes

In addition to sensing intervening field structure, kinetic features can be used to infer
global or distant morphology and events. For example, particles energised in a transient
event require a finite amount of time to reach their point of observation.A priori, neither
the event location nor initiation time are known. However, slower particles from the same
event take longer to travel the same distance. In its simplest form, one can write down the
trajectory as

xobs− xevent= v × (tobs(v)− tevent) (7.8)

Thus the time history of different velocity particle arrivals can be used to solve this set
of equations for the unknown event position,xevent and event timetevent. In the sections
which follow, we use similar arguments applied to more complicated situations. All of
them rely on Liouville’s Theorem, either explicitly or (as here) implicitly.

Additionally, such information is often used qualitatively to locate the observation
point with respect to remote boundaries. For example, the Earth’s bow shock is a copious
source of suprathermal electrons, accelerated at the shock itself or escaping in the form of
a broad heat flux from the hot magnetosheath. Thus the presence of such electrons implies
that the observation point lies on a magnetic field line which is connected to the bow shock.
In this regard, electrons have the advantage that their gyroradii are negligible and that their
speeds are higher than characteristic bulk flows, so that they essentially travel along the
magnetic field lines with, to lowest order, zero time delay.

In the realm of multi-satellite observations, each satellite then measures electrons on
different field lines. Treating such measurements as simple on/off indicators of connection
to the bow shock, the scientist could build an image of the bow shock with as many pixels
as satellites. Such an image, or sequence thereof, would provide information on the shape
and dynamics of the bow shock on scales which can be much larger than the spacecraft
separation depending on the geometry. The fact that field lines are neither straight nor
uniform complicates this analysis, but not fatally so in all cases.

7.6 Velocity Dispersion or “Velocity Filter”

Let us consider here a localised, time-stationary source of particles, by contrast with
the transient discussed in the preceding section. As an analogy, consider a pier at one side
of a body of water from which boats of different speeds travel toward the opposite shore.
If the supply of boats is maintained then they will all arrive at the same point at the same
rate with which they left. That is to say, the distribution in phase space at the arrival point
will be identical to that at the departure pier, via Liouville’s Theorem.

However, if the body of water is a flowing river, the boats will suffer a convective
drift in addition to their own cross-river velocity. (In the plasma case, this drift is usually
the E × B drift.) The fastest boats will still arrive close to their previous location, but
slower boats will be swept further downstream. Thus boats leaving the same point will be
“dispersed” along the opposite shore according to their velocities. At a given point on the
opposite shore, the convective flow has acted as a filter to allow only particles of a single
velocity to pass, hence the term “velocity filter” effect, which is also in common usage,



7.7. Particle Anisotropies and Remote Sensing 165

along with “time of flight” signatures. This concept is embodied in equation7.8 together
with ay-drift equation

yobs− yevent= Vdrift × (tobs(v)− tevent) (7.9)

More common, perhaps, in the magnetospheric case is not a point source, but an ex-
tended one. Consider, then, the case of a semi-infinite line of piers extending downstream
from the single pier invoked above, as sketched in Figure7.2. If one approaches from
the upstream direction on the opposite bank, the first boats to be seen will be the fastest
ones which departed from the end pier. Downstream of this point, slightly slower boats
from the end pier will arrive together with the fastest boats from the second pier. As one
progresses further downstream, the fastest boats are always present and the distribution of
arriving boats extends progressively to lower speeds as shown in the Figure.

This is what happens at the Earth’s bow shock, or for that matter any shock of finite ex-
tent, such as slow mode reconnection shocks in the geomagnetic tail, and is known as the
“foreshock” region. Well upstream of the shock, the observer is disconnected magnetically
and sees no shock-related particles. Just downstream of the tangent field line (in the case
of curved shocks such as the bow shock) or separatrix (in the case of reconnection shocks)
the fastest particles, typically energetic electrons, will be found. As one moves deeper into
the foreshock, the electron distribution fills in to lower velocities down to some “cutoff”
velocity. This cutoff velocity can be related, via the simple kinematics described above, to
the geometry of the situation, to the extent that foreshock “coordinates” have been devised
based on distance from the tangent point of contact (or “X-point”) along the magnetic field
line to a point exactly upstream of the observer and a second distance from that upstream
point to the observer. Deeper still lies an ion foreshock to which the same considerations,
ignoring local acceleration processes, may be made. Similar reasoning has also been ap-
plied to the entry of particles into the cusp region and near the separatrix emanating from
the X-line on the dayside magnetopause.

These ideas can be applied to a subset of the particle distribution (e.g., the field-aligned
particles only) or to higher dimensional velocity space distributions, where magnetic mo-
ment conservation, or other trajectory considerations, must be included.

To date, the vast majority of applications have relied on data from a single spacecraft.
Multiple spacecraft can be used as a collection of single spacecraft, to effectively deter-
mine the geometry of a physical region. Additionally, well-placed spacecraft can be used
to apply some of the Liouville mapping techniques described above to map from source
region to distant observation point, thereby shedding light on the intervening local pro-
cesses which shape the distribution or provide local acceleration or scattering. Moreover,
multiple spacecraft enable one to distinguish a localised source which is switched on at
some time from a more extended source with a foreshock, as entering a foreshock yields a
spacecraft time sequence which is very similar to that for a temporal switch on.

7.7 Particle Anisotropies and Remote Sensing

7.7.1 The Gyro-Orbit

Charged particles in a magnetic field describe a circular orbit perpendicular to the
magnetic field vectorB, together with a motion parallel to the field producing a spiral
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Figure 7.2: Velocity dispersion due to convective drift. A semi-infinite set of piers on the
left all launch a range of boats whose velocity distribution function is shown to the left.
The fastest boats (thick solid lines) travel in nearly horizontal lines, while slower boats
(progressively thinner and more dotted lines) also suffer convection by the flow (broad
grey arrows). On the opposite side of the river, the observed distribution of boats arriving
depends on location. At the most upstream locations, no boats are seen. Moving down-
stream, first only the fastest boats are seen. Still further downstream slower boats from
more upstream piers, together with faster boats from the opposite piers, are seen. Liou-
ville’s Theorem forces the phase space density to be constant along trajectories, enabling
us to construct the observed distribution functions, as shown on the right for three loca-
tions. Note the cutoff at low velocities, and the way this cutoff systematically moves to
lower velocities with downstream position.
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trajectory. The frequency and radius of this “gyromotion” are given by

ω =
qB

m
(7.10)

Rg =
mv⊥

qB

=

√
2mE

qB
sinβ (7.11)

wherev⊥ is the particle velocity perpendicular to the magnetic field, andβ is the pitch
angle betweenv andB.

Equation7.11can also be written in vector form:

Rg =
m

qB2
v × B (7.12)

whereRg is the vector from the particle’s position to its gyrocentre.
For protons, one can write

Rg = 4569.4 km ·

√
E/keV

B/nT
sinβ (7.13)

Table7.1 lists some sample results from equation7.13, demonstrating that the gyroradius
of energetic protons is quite comparable to the scale lengths of magnetospheric processes.
For heavier ions, the gyroradius is even larger, scaling with

√
m (equation7.11). On the

other hand, electrons in these energy and field ranges possess gyroradii on the order of
100 km or less, too small for any observable effects normally.

Table 7.1: Sample proton gyroradii and periods

10 nT 100 nT

10 keV 1400 km 140 km

100 keV 4600 km 460 km

Period 6.5 s 0.65 s

7.7.2 Particle Anisotropies

One of the most straightforward particle observations is a measure of the particle
anisotropies, that is, the extent to which the distribution function deviates from isotropy
in velocity space. Anisotropies can arise due to the relative motion of the observer with
respect to the frame associated with an isotropic particle source, due to gradients in the
intervening medium, or to additional sources, sinks, or scattering of the particles en route
to the observer. First order directional anisotropies are most easily interpreted as net par-
ticle streaming. Here we outline the basic calculation of the expected anisotropies due to
two effects: a gradient in the particle density and intrinsic first order anisotropies due to
either constant velocity shifts (same for all particles) or more complex distributions. The
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Figure 7.3: Ions impinging an observation point (black dot) from several directions; the
gyrocentres of each orbit (open circles) are displaced byRg; the magnetic fieldB points
into the paper.

first is related to the finite extent of the particle gyro-orbit and to spatial inhomogeneities.
The second is purely a velocity-space property. If the mechanism(s) responsible for the
anisotropy are known, a measurement of the local particle anisotropy provides direct in-
ference of non-local characteristics (density gradients, source region velocity, etc.). We
return later to the question of which effects are likely to be observable, as often there are
competing processes which give rise to a reduced level of anisotropy.

The starting point for all such calculations is the basic conservation of particles. Let
us assume that there is a spatial gradient in the number of particles. Due to the rapid
gyromotion, the assumed spatial gradient will refer to particles’ gyrocentre (or “guiding
centre”) as in Figure7.3. Additionally, we assume that the particles’ velocity distribution
takes on a relatively simple, known form in a frame of reference moving with a bulk
velocityV with respect to the spacecraft frame.

Thus the problem commences by relating the phase space densityf (r, v) in the space-
craft frame to the spatially-dependent, velocity distributionfGC(rGC, v

′). The vectorrGC
is the position of the guiding centre of a particle whose instantaneous position and veloc-
ity are r andv. The velocity in the moving frame is denotedv′. In practice, the spatial
dependence offGC may be linked to the spatial dependencies of other parameters, such as
B, which we shall ignore here. Equating the number of particles in an elemental volume
in each coordinate system gives

f (r, v) d3r d3v = fGC(rGC, v
′) d3rGC d3v′ (7.14)

This deceptively simple statement reduces the entire problem, and many similar to it, to
one of coordinate transformation. In this case, the transformation laws are given by

rGC = r + Rg (7.15)

v′
= v − V (7.16)

Using equation7.12 and assumingB is uniform, it is straightforward to show that the
jacobian relating d3r d3v and d3rGC d3v′ is unity in this case. It therefore follows from
equation7.14that

f (r, v) = fGC(rGC, v
′) (7.17)
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Note that even iffGC(v′) is independent of gyrophase,f (r, v) contains a gyrophase de-
pendence through theRg dependence ofrGC .

We now Taylor expand the right-hand side of equation7.17about the point in phase
space(rGC = r, v′

= v). This results in

f (r, v) = fGC(r, v)− V ·
∂

∂v
fGC(r, v)+ Rg · ∇fGC(r, v)

+O
[(

Rg

L

)2

,
Rg

L

V

v
,

(
V

v

)2
]

(7.18)

whereL is the scale length of the spatial variation offGC . Now expand the velocity
dependence offGC(r, v) in spherical harmonics, i.e.,

fGC(r, v) = fo(r, v)
[
1 + v̂ · εo + v̂

TS v̂ + . . .
]

(7.19)

whereεo is the first order anisotropy (i.e., the first degree term in the spherical harmonic
expansion) andS is the second order anisotropy. We shall assume that|S| � |εo| � 1
and restrict our calculations to first order results. The various derivatives offGC(r, v) are
now easily calculated in terms of this expansion as

∇fGC(r, v) = ∇fo(r, v) [1 +O(εo)] (7.20)

∂fGC(r, v)

∂v
=

∂fo(r, v)

∂v
[1 +O(εo)]

= v̂
∂fo(r, v)

∂v
[1 +O(εo)] (7.21)

Substituting the results from equations7.19–7.21into equation7.18brings us finally to ⇒7.1

f (r, v) = fo(r, v)

[
1 + v̂ · εo + Rg · ∇ ln fo(r, v)− V · v̂

∂ ln fo(r, v)

∂v

+O
(
S,
Rg

L
εo,

V

v
εo,

(
Rg

L
εo

)2

,
Rg

L

V

v
,

(
V

v

)2
)]

(7.22)

Using equation7.12for Rg, swapping dot and cross product, and general tidying leads to

f (r, v) ≈ fo(r, v)
[
1 + v̂ · εo + v̂ · εC−G + v̂ · ε∇n

]
(7.23)

where

εC−G ≡ −
V

v

∂ ln fo
∂ ln v

(7.24)

is the Compton-Getting anisotropy and

ε∇n ≡
mv

qB2
B × ∇ ln fo (7.25)

is the density gradient-induced anisotropy.
The above forms are not the way these anisotropies are usually presented, because the

energetic particle detectors on which most observations are based do not measuref di-
rectly. The detector count rateNijk/tacc is proportional to the differential intensity, dJ/dE,
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which is the number of particles per unit area per second per steradian per unit energy (E)
travelling in the direction̂v (see Chapter5, particularly Section5.2.3). Relating dJ/dE to
f is easily accomplished by returning to an expression for the number of particles in an
elemental phase space volume, which in this case becomes

f (r, v) d3r d3v =
dJ

dE
dA dt d� dE (7.26)

Noting dA vdt = d3r, dE = mv dv (for non-relativistic particles), and d3v = v2 dv d�
leads to the conclusion thatf and dJ/dE are related by

v2

m
f (r, v) =

2E

m2
f (r, v) =

dJ

dE
(7.27)

Thus the expansion to first order anisotropies for dJ/dE is just that obtained by multiply-
ing equation7.23by the (isotropic) factorv2/m. In particular, all the first-order Compton-
Getting and density gradient anisotropiesεC−G andε∇n are unchanged. However, we
need to express them in terms of the measured parameter dJ/dE. The spatial variation is
simply∇ ln fo = ∇ ln(dJ/dE). Typically, dJ/dE is represented by a power law in energy
of the form

dJ

dE
∝ E−γ

For such a form and non-relativistic particle speeds

∂ ln fo
∂ ln v

=
v

f

[
−

2m

v3

dJ

dE
+
m

v2

dE

dv

(
−γ

E

)
dJ

dE

]
= −2(γ + 1) (7.28)

so that

εC−G = 2(γ + 1)
V

v
(7.29)

ε∇n =
mv

qB2
B × ∇ ln

(
dJ

dE

)
(7.30)

The Compton-Getting anisotropy arises because particles of fixed energy in the space-
craft frame correspond to different energies in the moving frame, depending on their di-
rection. So although the distribution in the moving frame may be isotropic, different parts
of the spectrum are being sampled at a single acceptance energy (spacecraft frame) and
only the direction in the spacecraft frame is scanned. The resulting anisotropy reflects the
spectral shape in the frame of bulk flow: if the spectrum were completely flat (∂fo/∂v = 0)
we haveγ = −1 andεC−G = 0; whereas if the slope of the spectrum goes positive, the
anisotropy becomes negative, meaning it is opposite to the bulk flowV . Normally the
slope is negative andεC−G ‖ V . Note that particles withv <

∼ |V | are excluded from the
present expansion. Treatment of these particles requires use of equation7.17without any
approximations.

The intrinsic first order anisotropy represented byεo could also contain a component
which would correspond likewise to a bulk velocity shift, and would incorporate the same
Compton-Getting factor 2(γ + 1)/v. It is more natural to include this component in the
bulk velocityV and reserveεo for first order anisotropies which are related to the internal
structure of the velocity distribution function.
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The density gradient anisotropy arises because there are more particle guiding centres
(for a given energy) on one side than the other. For example, if there are more particles
with guiding centres above the observation point shown in Figure7.3than below, there will
be a greater flux of particles arriving from the left than from the right at the observation
point; hence the observer will record an anisotropy. The anisotropy is perpendicular to
both the density gradient and the magnetic field.

7.7.3 When is an Anisotropy not an Anisotropy?

The derivation given in the preceding section assumed that the only effects present
were a frame transformation (and/or intrinsic first order anisotropy) and a density gradient.
In fact, with the exception of the Compton-Getting anisotropy, most effects are counter-
balanced by others, so that, e.g., an isolated density gradient anisotropy is rarely measured.

The fundamental argument rests with Liouville’s Theorem, which requires that phase
space density be constant along particle trajectories. If a distribution of particles is isotropic
at some location, and particle trajectories connect the phase-space regions measured by the
observer with that location, then the distortions inf are restricted to those implied by the
particle trajectory solutions. A simple bulk frame shift produces the Compton-Getting
effect derived above. Magnetic forces do not affect a particle’s energy, and thus move
particles along constant energy surfaces in velocity space which therefore cannot induce
any anisotropy. And conservative electric forces act oppositely but symmetrically on tra-
jectories coming from/going to the source location. That is, suppose particles of energy
E are accelerated by such a field in coming from the source, so they appear at a higher
energyE+1E when observed. Particles of the same observed energyE+1E travelling
toward the source will lose an identical amount of energy, and will arrive at the source
with an energyE. Since the source region corresponds, by assumption, to an isotropic
velocity distribution, these two sets of particles will have the same phase-space density at
the source and hence also, by Liouville’s Theorem, at the observer’s location. Thus the
observer will also see an isotropic distribution.

Therefore, before applying the density gradient anisotropy given in Section7.7.2 it
is important to examine the process(es) which have given rise to the density gradient in
the first place; such processes may themselves also lead to other anisotropies. Indeed, the
above invocation of Liouville’s Theorem insists that they will, and that the density gradient
anisotropy will not be observed at all.

While this is a valuable lesson in the power of applying Liouville’s Theorem, its naı̈ve
interpretation would suggest that first order anisotropies should be rarely observed and
limited to the Compton-Getting values. In fact, first order anisotropies are frequently
observed, and the reason is related to the restrictions necessary for Liouville’s Theorem to
hold. Some circumstances under which Liouville’s Theorem is violated include:

1. when there are sources or sinks of particles;

2. when there are collisional, dissipative, or other forces for which(∂/∂v) · F 6= 0;

3. when boundaries lead to particle trapping or exclusion, so that only portions of the
distribution can be mapped from source to the spacecraft;

4. when spatial inhomogeneities lead to velocity filtering (see Section7.6);
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represent ion orbits that do not cross the absorbing boundary and therefore exhibit high
intensities, while thin arcs are those parts of the trajectory connecting to the boundary, and
dotted arcs are non-existent trajectories on the other side of the boundary.

5. when temporal variability at the source or elsewhere similarly leads to non-simul-
taneous observation of oppositely-directed trajectories.

In the next sections we explore some applications of particle kinetic effects at physical
boundaries corresponding to some of these circumstances. Despite the breakdown of
applicability of Liouville’s Theorem (or indeed because of it), it is still possible to use
mapped particle trajectories in a quantitative way to infer remote plasma sources and struc-
ture.

7.7.4 Remote Sensing of Boundaries

In Section7.7.2, we show how a large-scale density gradient can produce a first order
anistropy in the ion distributions. However, if there are very sharp gradients, such as the
step function types at particle boundaries, the simple anisotropy formula of equation7.30
no longer applies; instead, we can obtain snapshots of the moving boundary.

The left side of Figure7.4illustrates the gyro-orbit of an ion detected on the spacecraft
(S/C) while approaching an absorbing boundary. The spacecraft is a distanceD from the
boundary, measured parallel to its normal, which is oriented at an angleψ to some arbitrary
reference azimuth. The ion is detected at velocityv, at phase angleφ; its gyrocentre is a
distanced0 from the boundary.

d0 = D − Rg sin(φ − ψ) (7.31)

High fluxes are measured only if the entire orbit is on the particle-rich side of the boundary,
for once an ion crosses the boundary on any part of it orbit, it is lost. In any real situation,
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Figure 7.5: Ion fluxes plotted for 3 different phase angles as a function of time (upper) and
gyrocentre distanced0 from boundary (lower).

the boundary may also be a source of detected ions but at different flux levels related to
the conditions on the other side of the boundary. For example, the magnetopause is an
example of an absorbing boundary, since the magnetic field (usually) changes is configu-
ration from one side to the other. This means that pure gyromotion cannot be maintained
if an ion crosses the boundary. The ion finds itself in a field of a different orientation
and adopts a new trajectory, which will not return to the spacecraft. Other ions from the
far side of the boundary may cross over in such a way as to adopt a gyration that brings
them to the spacecraft, giving rise to, e.g., lower flux measurements from certain arrival
directions. This is illustrated in the right side of Figure7.4, where the dotted arcs indicate
non-existent particle trajectories, thin arcs indicate trajectories which take particles to or
from the boundary, and thick circles indicate particle trajectories which do not intercept
the boundary and so do not have reduced fluxes. As the spacecraft approaches the bound-
ary, fluxes of particles on trajectories returning from the boundary reduce, beginning with
the higher energy particles due to their larger gyroradii (see also Figure7.6). The arrival
directions at which these reduced fluxes appear span an increasing angular range as the
boundary is approached. Thus, the ion flux, at a given energy and summed over all look
directions, changes progressively from high to low as the spacecraft (together with the
gyro-orbits arriving at the spacecraft) approaches and passes through the boundary. It is
convenient to take the location of the gyrocentre itself as the indicator for high or low flux.

Displaying the boundary motion with a time series of snapshots may be very illustra-
tive, but it would be desirable to have a more analytical method that can be reasonably
automated. Particle fluxes, when plotted against time, exhibit different profiles for differ-
ent phase angles, as shown in the upper plot in Figure7.5. This “azimuthal asymmetry”
results from the displacement of the various gyro-orbits. For each phaseφ, determine the
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time tx(φ) when its flux changes between high and low. We can now fit these switching
times to a model of the boundary motion.

To do this, represent the boundary motion asD = U(t − t0); for each phaseφ, solve
equation7.31for the timetx whend0 = 0, the time when the gyrocentre for that phase
crosses the boundary.

tx(φ) = t0 +
Rg

U
sin(φ − ψ)

= t0 +
cosψ

U
Rg sinφ −

sinψ

U
Rg cosφ (7.32)

Equation7.32is linear in the three unknownst0, (1/U) cosψ , and(1/U) sinψ . A linear
least-squares fitting procedure may be applied to find these unknowns from the actual
measurements of the{tx(φ)}.

Once the solution has been found, one can apply it to equation7.31to determined0
for each flux measurement. Plotting flux againstd0, as in the lower panel of Figure7.5,
should demonstrate that this is the parameter that best orders the high-low transitions for
all phases. Furthermore, snapshots like those on the right of Figure7.4can be drawn with
the solution for the boundary motion, as graphic evidence for its correctness.
Note: in the above example,U is negative, meaningD andd0 decrease with time, which
is why the flux increases to the right in the lower panel.
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7.7.5 Absorbing or Source Boundary?

In the above example, we have demonstrated remote sensing with a boundary that
empties gyro-orbits when the centres cross it, something that sounds very unphysical.
After all, the ion itself is never at the gyrocentre. Instead, one can imagine two types of
discontinuities that can lead to particles vanishing, shown in Figure7.6.

Absorbing boundary where the magnetic field changes configuration, so gyro-orbits are
disturbed; this type is described above. Ideally, if any part of the orbit crosses the
boundary, it must be empty. The magnetopause is such a boundary. There must of
course be a source of the population on the particle-rich side.

Source boundary where the magnetic field is unchanged across it, but the field line on
the boundary is the last one connecting to some remote source; ions can be injected
onto this last field line at such a phase that the gyrocentre is outside the source
region. Thus ions can be observed up to two gyroradii beyond the boundary. This
corresponds to plasma sheet boundaries, or to the division between flux transfer
events and their surroundings.

As long as one restricts oneself to a single gyroradius, there is no way remote sens-
ing can distinguish the two types: the derived boundary locations will be shifted by two
gyroradii depending on the model. However, with different gyroradii, either due to other
pitch angles or particle species, comparison of their behaviour could resolve this, as shown
in the plots in Figure7.6. (These are meant to be omnidirectional fluxes plotted against
position.)

In reality, there may be less difference between the two models than one thinks. The
absorbing boundary is not perfectly solid; the randomness of the magnetic field rotation
means many ions can indeed return from a boundary crossing, or there can be those re-
entering after scattering from other gyro-orbits. The source boundary too is not absolute,
for those ions populating the most external gyro-orbits would be originating from only
a limited range of gyrophases. When gyro-averaged, such orbits would show a reduced
density.

It is therefore best to maintain the gyrocentre itself as the determining criterion for full
or empty orbits, not because it is physical, but because it is an average of the fuzziness of
both models. One should, however, remain aware of the true causes of the changes in flux
levels at boundary crossings.

7.8 Example Applications

Numerous applications of the basic ideas presented in this chapter can be found in the
literature. A small subset are shown below by way of illustration.

7.8.1 1-D Mapping of Electrons at the Earth’s Bow Shock

The Earth’s bow shock represents a well-studied example of a collisionless shock. The
internal structure of the shock layer has received considerable attention. Thermal electrons
respond adiabatically to the changes in the magnetic field and to the (field-aligned) electric
field (e.g., as measured in the deHoffmann-Teller frame in which the bulk flow outside the
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Figure 7.7: Observed (solid) and mapped (shaded) field-aligned electrons at a collisionless
shock in which the fields have been determined experimentally. The innermost hatched
region is inaccessible from either direction, while the intermediate region is populated
by electrons originating from and returning to the downstream plasma. The outermost
shaded regions correspond to electron trajectories which connect from far upstream to far
downstream, and show the gross effect of the shock electrostatic field in accelerating the
incident electrons to positive values (note the shifted peak). [AfterScudder et al., 1986,
Figure 2B].

shock layer is field aligned). Figure7.7 is taken fromScudder et al.[1986], and shows a
cut of the electron distribution corresponding to field-aligned electrons. These electrons
respond only to the electrostatic potential which, in this case, is determined observation-
ally. The solid curve shows the measured distribution while the various shaded pieces are
the result of Liouville mapping in the measured fields. The outer segments correspond to
electron trajectories which connect from the asymptotic upstream to downstream states.
Note the shift in the peak to positive velocities due to the acceleration by the potential.
The innermost region is inaccessible from both the upstream and downstream regions (i.e.,
these trajectories are trapped near the vicinity of the shock), while the intervening regions
correspond to electrons which start in the asymptotic downstream region, have insufficient
energy to overcome the shock potential, and thus return to the downstream region. The
mapping shows how well the overall features of the distribution are the result of the shock
dc fields (the upstream distribution is much narrower in velocity, comparable to the width
of the shifted peak).

7.8.2 2-D Electron Mapping in the Earth’s Foreshock

An example of 2-D electron distributions is shown in Figure7.8. The points represent
measured electron distributions at several phase space densities taken in high field regions
(top) and low field regions (bottom) within ULF waves present in the Earth’s foreshock.
These measured points are fit with smooth contours, in this case ellipses shown as the
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Figure 7.8: Observed contours of constant phase space density (symbols) and fitted ellipses
(solid curves) in the field maxima (top) and minima (bottom) of electrons in the ULF
wave field upstream of the Earth’s bow shock. Dashed curves are circles to guide the
eye. Adiabatic electron behaviour results in nearly isotropic contours in the high field
regions, and a quantitative comparison between the fitted ellipses yields estimates of the
intervening magnetic field and electric potential. [FromChisham et al., 1996, Figure 6].

solid curves. Assuming adiabatic electron behaviour, equations7.6and7.7can be used to
show that ellipsoidal contours map to ellipses. Moreover, if the contours at the minimum
in the magnetic field are used, there are no regions inaccessible to mapped trajectories for
monotonic fields and potentials (although not all trajectories starting at the minimum reach
these regions). Thus the parameters of the ellipses at the same phase space density at field
minimum and maximum (or anywhere in between, if desired) can be used to deduce the
electrostatic field. This, together with the time variation throughout several wave cycles,
is reported byChisham et al.[1996]. The results show which range of electron energies
(i.e., phase space densities) participate in a relatively simple adiabatic response and which
regions where some other process(es) or breakdown in the assumptions occur. In principle,
this method could be used when neither the electric nor magnetic field were known.

7.8.3 Remote Sensing of the Earth’s Bow Shock by Field-Aligned
Energetic Electrons

The Earth’s bow shock is a copious emitter of suprathermal and energetic electrons
into the upstream solar wind. As discussed in Section7.6, dispersion in the foreshock re-
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gion due to the velocity filter effect results in only particles above a certain (field-aligned)
velocity being observed at any location behind the tangent line. The total electron popu-
lation is then the superposition of the solar wind thermal population and, above this local
cutoff velocity, the shock-associated energetic electrons. An example of such an electron
distribution is shown in Figure7.9. Since the cutoff velocity is related only to the geometry
of the situation and the “convection” velocity, a direct measurement of this cutoff velocity
and the localE × B convective drift enables one to reconstruct the geometry, that is, to
locate the observation point in relation to the field line which is tangent to the shock. By
assuming an empirical shape for the bow shock (see Section10.4.6on page259), its po-
sition and scale can thus be determined. Multiple satellite studies of this kind open up the
possibility to provide a more detailed, time-dependent picture of the bow shock position
and shape, including local deviations from the model shape. Since these electron beams
are unstable to Langmuir oscillations, direct observation of the electron beams and knowl-
edge of the bow shock geometry provide wave analysts with an estimate of the (resonant)
wave vector. This quantity can not be determined by direct wave measurements, and is
crucial in theories of the nonlinear wave development.

7.8.4 Ions in the Cusp

Dayside reconnection at the magnetopause leads to an injection of energetic particles
which travel along field lines and penetrate to low altitudes in the polar regions. The re-
connection is associated with anE × B convection which results in a velocity filtering
as the reconnected field lines convect poleward from the dayside. The consequence is
that only ions above a cutoff energy dictated by such time-of-flight considerations will be
observed at any location in the cusp. Assuming the reconnection yields a Maxwellian dis-
tribution moving along the field at the Alfvén speed in the rest frame of the field line (the
deHoffmann-Teller frame), the distributions observed in the magnetosphere will be drift-
ing Maxwellians truncated at the deHoffmann-Teller frame speed, referred to as Cowley-D
distributions. An example of such a distribution is shown in Figure7.10.

Moreover, an equatorward-moving spacecraft at low altitudes over the poles will see
ions down to a cutoff velocity determined by the ion velocity and the time of flight from the
reconnection site or, equivalently, distance behind the most recently reconnected field line.
This is just the velocity filter effect in the curved dipole geometry of the Earth’s magnetic
field rather than the straight geometry depicted in Figure7.2. An example of such a set
of observations together with a sketch of the velocity filter effect in curved geometry is
shown in Figure7.11.

7.8.5 Remote Sensing of a Flux Transfer Event by Finite Gyroradius
Effects

The passage of a flux transfer event (FTE) over the ISEE-2 spacecraft as observed
by the medium energy particle spectrometer has been extensively analysed byDaly and
Keppler [1983]. Figure 7.12 shows the proton intensities in various pitch angle ranges
during the passage into the FTE, from low to high intensity regimes: in the left diagram,
the data are plotted against time, in the right one, by the distance of the gyrocentre from the
deduced boundary. This diagram is the equivalent of Figure7.5 with real data. The FTE
boundary orientation and its speed are found from the best-fit solution of equation7.32.
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Figure 7.13: The proton gyro-orbits for 8 sectors over 6 spacecraft spins during the
entrance to the FTE. The central time of each spin is printed above each plot as UT
(hhmm:ss). Dashed circles are for particles of low intensities, solid ones for those of high
intensity. The boundary drawn is the best-fit solution of equation7.32. The high-intensity
side of the boundary is marked by shading. [FromDaly and Keppler, 1983, Figure 5].

The motion of the boundary is illustrated in snapshots over 6 spacecraft spins (≈4 s) in
Figure 7.13, where solid and dashed circles are used to indicate gyro-orbits with high
and low intensities respectively. This diagram confirms that the proton intensities switch
from low to high when the gyrocentre crosses the boundary. The speed of the boundary
was found to be 44 km/s along its normal, which translated into a speed for the FTE of
94 km/s, assuming it moves in the plane of the magnetopause.

Multi-spacecraft missions open up the possibility to extend such analyses from the
simplifying planar assumption to more complicated boundary shapes.
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